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Abstract

Abstention, the refusal of large language
models (LLMs) to provide an answer, is in-
creasingly recognized for its potential to mit-
igate hallucinations and enhance safety in
LLM systems. In this survey, we introduce a
framework to examine abstention from three
perspectives: the query, the model, and hu-
man values. We organize the literature on
abstention methods, benchmarks, and evalu-
ation metrics using this framework, and dis-
cuss merits and limitations of prior work. We
further identify and motivate areas for future
work, centered around whether abstention
can be achieved as a meta-capability that
transcends specific tasks or domains, while
still providing opportunities to optimize ab-
stention abilities based on context.

1 Introduction

Large language models (LLMs) have demonstrated
generalization capabilities across NLP tasks such
as question answering (QA) (Wei et al., 2022;
Chowdhery et al., 2022), abstractive summariza-
tion (Zhang et al., 2023a), and dialogue genera-
tion (Yi et al., 2024). But these models are also un-
reliable, having a tendency to “hallucinate” false in-
formation in their responses (Ji et al., 2023b), gener-
ate overly certain or authoritative responses (Zhou
et al., 2024b), answer with incomplete informa-
tion (Zhou et al., 2023b), or produce harmful or
dangerous responses (Anwar et al., 2024). In these
situations, the model should ideally abstain: to
refuse to answer in the face of uncertainty (Wen
et al., 2024; Feng et al., 2024b; Yang et al., 2023).

Current methods to encourage abstention typi-
cally rely on calibration techniques, including lin-
guistic calibration (Mielke et al., 2022; Huang et al.,
2024b), which aim to accurately and consistently
estimate a model’s confidence in its response, then
arrange for the model to abstain if the confidence
score for a given response falls below some thresh-
old threshold (Varshney et al., 2022; Xiao et al.,
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Figure 1: Our proposed framework for abstention
in language models. Starting with input query x,
the query can be gauged for answerability a(x) and
alignment with human values h(x). The model
then generates a potential response y based on
the input x. If query conditions are not met, the
model’s confidence in the response ¢(x,y) is too
low, or if the response’s alignment with human val-
ues h(x,y) is too low, the system should abstain.

2022; Desai and Durrett, 2020). But questions of
human values and the answerability of the query
itself are difficult to model in terms of model confi-
dence (Yang et al., 2023).

While prior work demonstrates the potential of
abstention in enhancing model safety and relia-
bility (Varshney et al., 2023; Wang et al., 2024c;
Zhang et al., 2024a), the study of abstention has
also been constrained to specific QA tasks. This
task-specific approach limits the broader applica-
bility of abstention strategies across the diverse
range of scenarios encountered by general-purpose
chatbots engaging in open-domain interactions.
Recognizing these limitations, this paper aims to
broaden the understanding of abstention by study-
ing it within a general chatbot system framework.
Our goals are to encourage new methods to achieve
abstention and adapt abstention mechanisms to suit
a wide array of tasks, thereby enhancing the overall
robustness and trustworthiness of Al interactions.

To this end, our survey presents an overview of
the current landscape of abstention research. We
provide a definition of abstention that incorporates
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not only technical perspectives—query examina-
tion and model capabilities—but also considers
alignment with human values. We categorize exist-
ing methods to improve abstention in LLMs based
on the model lifecycle (pretraining, alignment, and
inference), and provide an analysis of evaluation
benchmarks and metrics used to assess abstention.
In our discussion, we aim to establish a clear entry
point for researchers to study the role of abstention
across tasks, facilitating the incorporation of new
abstention techniques into future LLM systems.
We summarize our contributions below:

* We introduce a framework to analyze abstention
capabilities from three perspectives—the query,
the model, and human values. This framework
organizes existing research and provides a foun-
dation for developing adaptable and robust abst-
ention mechanisms for Al systems (§2).

* We conduct a detailed survey of existing absten-
tion methods (§3) as well as evaluation bench-
marks and metrics (§4), aiding researchers in
selecting appropriate strategies and identifying
areas for further research to advance the field.

* We discuss other considerations and underex-
plored aspects (§5) of abstention, highlighting
pitfalls and promising future directions. We
encourage researchers to develop more robust
model abstention mechanisms and demonstrate
their effectiveness in real-world applications.

2 Abstention in LLMs

Definition We define abstention as the refusal to
answer a query. Abstention includes a spectrum
of behaviors ranging from partial to full absten-
tion (Rottger et al., 2024a); for example, express-
ing uncertainty, providing conflicting conclusions,
or refusing to respond due to potential harm are
all forms of abstention. When a model fully ab-
stains, it may respond “I don’t know” or refuse to
answer in another way. Whereas partial abstention
may involve both answering and abstention, such
as self-contradictory responses, e.g., “l can’t an-
swer the question, but I suppose the answer might
be...” We do not consider ignoring and/or refram-
ing the question as abstention; but rather as failure
modes of LLMs in following instructions (Rottger
et al., 2024a; Varshney et al., 2023).

For the abstention expression—the words a
model uses to convey that it has abstained—we
adopt five major types of expressions from prior
work (Varshney et al., 2023; Wang et al., 2024c),

indicating that the model (i) cannot assist; (ii) re-
futes the query; (iii) provides multiple perspectives
without expressing preference; (iv) perceives risk
associated with the query and answers cautiously
with a disclaimer; and (v) refuses to offer concrete
answers due to lack of knowledge or certainty. Ex-
pressions can be identified through heuristic rules
and key word matching (Zou et al., 2023; Wen et al.,
2024; Yang et al., 2023), and through model-based
or human-based evaluation (§4).

Below, we describe and motivate our framework for
analyzing abstention behavior (§2.1), then provide
a formal definition of its components (§2.2).

2.1 Abstention Framework

We study abstention in the scenario of LLMs as
Al assistants, exemplified by chatbots such as
ChatGPT (OpenAl, 2023; Achiam et al., 2023),
Claude (Anthropic, 2023), LLaMA (Touvron et al.,
2023), and others (Chiang et al., 2023). We pro-
pose an idealized abstention-aware workflow for
these systems in Fig. 1. Given an LLM f that sup-
ports arbitrary generative modeling tasks and the
users’ input x, f generates an output y. We ana-
lyze the decision to abstain from three distinct but
interconnected perspectives:

* The query perspective focuses on the nature
of the input—whether the query is ambigu-
ous or incomplete (Asai and Choi, 2021), be-
yond what any human or model could possibly
know (Amayuelas et al., 2023), there is irrele-
vant or insufficient context to answer (Alianne-
jadi et al., 2019; Li et al., 2024b), or there are
knowledge conflicts (Wang et al., 2023b). In
these situations, the system should abstain.

The model knowledge perspective examines the
capabilities of the Al model itself, including its
design, training, and inherent biases (Ahdritz
et al., 2024; Kim and Thorne, 2024; Hestness
et al., 2017; Hoffmann et al., 2022; Kaplan et al.,
2020). For any given query, the system should
abstain if the model is insufficiently confident
about the correctness of output or has a high
probability of returning an incorrect output.

* The human values perspective considers ethical
implications and societal norms that influence
whether a query should be answered, emphasiz-
ing the impact of responses on human users (Kirk
et al., 2023a). A system should abstain if asked
for personal opinions or values (i.e., the query
anthropomorphizes the model), or if the query or



response may compromise safety, privacy, fair-
ness, or other values.
For examples of queries and outputs meeting con-
ditions for abstention, please see Appendix Tab. 2.

2.2 Problem Formulation

Consider an LLM f : X — ). When given a
prompt x € X, f generates a response y € ). We
model refusal to answer (abstention) as a function
r:X,)Y — {0,1} where r(x,y) = 1 indicates the
system will abstain from answering and r(x,y) =
0 indicates the system will return the output y.
We define r as the conjunction of three func-
tions, to be defined by a system designer, to assess
query answerability, the confidence of the LLM’s
response to the query, and the human value align-
ment of the query and response. We define these
three functions as:
* Query function a : X — [0, 1]. a(x) represents
whether an input x can be answered.
* Model confidence function ¢ : X,Y — [0, 1].
¢(x,y) indicates the model f’s confidence in its
output y based on input x.

* Human value alignment functions h : X, —
[0, 1]. We define two variants of h: h(x) operates
on the input alone and determines its alignment
with human values, and h(x,y) operates on both
the input x and predicted output y. h is measured
either through human annotation (Ouyang et al.,
2022) or a proxy model that can be learned based
on human preferences (Gao et al., 2023).

The refusal function r determines whether the LLM

should provide output y in response to input x as:

1 ifa(x) <6, ore(x,y) <6,
or h(x,y) < 0n
0 otherwise

’I"(X, y) =

where 6, 6., and 0, are score thresholds for each
of the three functions.

3 Abstention Methodology

We classify abstention methodology (Fig. 2) from
an LLM-centered perspective, based on when they
are applied in the LLM lifecycle: pretraining, align-
ment, or inference. Below, we summarize prior
work and provide ideas for future experiments.

3.1 Pretraining Stage

Pretraining methods to promote abstention are rare.
One notable exception is Neeman et al. (2023), who

perform data augmentation in pretraining to encour-

age LLMs to predict unanswerable when presented

with an empty or randomly sampled document.
Pretraining Summary & Ideas

* Adding refusal-aware data in pre-training is not well-studied.

¢ Demystify Pretraining Corpora: Investigate how the distribution of refusal-
aware data in pretraining corpora impact model abstention ability.

& Coarse-to-fine Abstention Pretraining: Adding data source information
including domain and reasons to abstain into pretraining may be helpful
for abstention ability and interpretability.

3.2 Alignment Stage

Instruction tuning To improve abstention capa-
bilities, Yang et al. (2023) construct an honesty
alignment dataset by substituting LLLM’s wrong or
uncertain responses with “I don’t know” and fine-
tuning on the resulting data. Zhang et al. (2024a)
introduce R-tuning, constructing and finetuning on
a refusal-aware dataset and showing improved ab-
stention capabilities; they argue that refusal-aware
answering is task-independent and could benefit
from multi-task training and joint inference. In
recent work, Brahman et al. (2024) demonstrate
that finetuning with LoRA (Hu et al., 2022) sig-
nificantly improves abstention while maintaining
general task performance. Furthermore, Wolfe et al.
(2024) show that various LLMs exhibit differing
levels of abstention improvement following fine-
tuning with QLoRA (Dettmers et al., 2023). How-
ever, Feng et al. (2024b) present contradictory find-
ings that abstention instruction tuning struggles to
generalize across domains and LLMs. Cheng et al.
(2024) find that instruction-tuning makes models
more conservative, leading to incorrect refusals.
Towards alignment with human values, Bianchi
et al. (2024) show that adding a small number of
safety instructions to instruction tuning data re-
duces harmful responses without diminishing gen-
eral capabilities, whereas an excessive number of
safety instructions makes LLMs overly defensive.
Varshney et al. (2023) construct responses for un-
safe prompts by combining fixed refusal responses
with Llama-2-generated safe responses, and see
similar results. Wallace et al. (2024) finetune LLMs
to follow hierarchical prompts, enhancing the fine-
grained abstention ability of LLMs. Zhang et al.
(2023b) also fine-tune LLMs with distinct goal pri-
ority instructions and instruct LLMs to prioritize
safety over helpfulness during inference.
However, safety tuning is not always helpful for
abstention on unseen data. For example, Lyu et al.
(2024) note that benign finetuning can increase
unsafe behaviors in aligned LLMs (Qi et al., 2024).
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Figure 2: Methods to improve LLM abstention grouped by pretraining, alignment, and inference stages.

To address this, Wang et al. (2024d) finetune LLMs
to evaluate their own outputs for harm and append a
“harmful” or “harmless” tag to its responses instead
of directly tuning LL.Ms to abstain.

Instruction Tuning Summary & Ideas

« Instruction tuning on abstention-aware data improves abstention ability
but can lead to over-abstention.

* Researchers disagree on whether instruction tuning helps LLMs learn
abstention as a meta-capability.

‘¥ Heterogeneous approaches: Abstention-aware instruction tuning datasets
tend to emphasize a few question-response formats. Incorporating other
abstention expressions, definitions, and domains may improve general-
ization. Ensembling models trained in different abstention domains, e.g.,
mixture of LoRA experts, may also help achieve better generalization.

Learning from preferences Tuning LLMs on
abstention-aware data may lead to overly con-
servative behavior, causing erroneous refusals of
queries. Cheng et al. (2024); Brahman et al. (2024)
address this through Direct Preference Optimiza-
tion (Rafailov et al., 2023), encouraging the model
to answer questions it knows and refuse questions
it does not know. Similarly, Liang et al. (2024)
train a reward model using Proximal Policy Opti-
mization (Schulman et al., 2017) to learn abstention
preferences, leveraging hallucination scores to de-
termine the LLM’s knowledge boundary. Factuality
alignment methods (Lin et al., 2024a; Zhang et al.,
2024b) employ a factuality-aware reward model.

Safety alignment methods (Dai et al., 2024; Tou-
vron et al., 2023; Bai et al., 2022; Shi et al., 2024;
Kim et al., 2024a) use explicit or implicit prefer-
ence models to reduce harmfulness, which though
not explicitly focused on abstention, will encour-
age abstention on unsafe prompts. E.g., Kim et al.

(2024a) apply an iterative self-refinement process,
where rejected answers are those labeled as harm-
ful by the reward model, and chosen answers (usu-
ally abstention) are obtained through self-feedback.
Other studies have explored multi-objective align-
ment approaches (Guo et al., 2024; Sun et al., 2024)
to encourage safe and helpful model behavior.

Learning from Preferences Summary & Ideas

* Preference optimization can help reduce over-abstention introduced by
instruction tuning on refusal-aware data.

‘¥ Ranking-based preference optimization: Since abstention is a spectrum of
behaviors, ranking-based preference optimization can extend the pair-wise
contrast to accommodate rankings over different degrees of abstention.

3.3 Inference Stage

We categorize inference stage methods as input-
processing, in-processing, or output-processing ap-
proaches based on when they are applied.

3.3.1 Input-processing Approaches

Query processing From the query perspective,
LLMs can choose to abstain based on the query
answerability. In this context, Cole et al. (2023) try
to first predict the ambiguity of questions derived
from the AmbigQA dataset (Min et al., 2020) to
disentangle the ambiguity from query to model.
Other methods aim to identify queries that are
misaligned with human values. For example, Qi
et al. (2021) and Hu et al. (2024) detect malicious
queries needing abstention by removing suspect
words from the query and analyzing the resulting
drop in perplexity. Some more exhaustive approach
Sun et al. (2023); Jain et al. (2023) further inves-
tigate changes in backward probability following



word deletion, word replacement, sentence para-
phrasing, perplexity filtering and retokenization.
The BDDR framework (Shao et al., 2021; Kumar
et al., 2024) employs a pre-trained language model
classifier to discern discriminative results after al-
tering suspicious words. Similarly, Xi et al. (2023)
measure changes in representation between original
and paraphrased queries using a set of distributional
anchors to identify harmful queries. Dinan et al.
(2019) suggest a self-adversarial training pipeline
as an attack classifier; when a malicious query is
detected, the LLM has the option to either abstain
from responding or modify the input accordingly.

Query Processing Summary & Ideas

* Query processing approaches focus on assessing query ambiguity or hu-
man value alignment.

¥ Context awareness: Existing work focuses on query-only processing,
overlooking insufficient or conflicting context for context-dependent tasks.

3.3.2 In-processing Approaches

Probing LLM’s inner state Recent studies, such
as those by Kamath et al. (2020) and Azaria and
Mitchell (2023), focus on training calibrators based
on LLM internal representation to predict the accu-
racy of the model’s responses, enabling abstention
when the likelihood of error is high. Further prob-
ing into the internal representations of LLMs to dis-
cern between answerable and unanswerable queries
has been conducted by Slobodkin et al. (2023), Ka-
davath et al. (2022), and Liu et al. (2020). Addition-
ally, Chen et al. (2024) introduce the EigenScore,
a novel metric derived from LLM’s internal states,
which can facilitate abstention by quantifying the
reliability of the model’s knowledge state.

In terms of leveraging the LLMs’ internal states
for safety judgments, Wang et al. (2024a) extract
safety-related vectors (SRVs) from safety-aligned
LLMs; which are then used as an abstention gate
to steer unaligned LL.Ms towards safer task per-
formance. Furthermore, Bhardwaj et al. (2024)
demonstrate that integrating a safety vector into
the weights of a finetuned LLM through a simple
arithmetic operation can significantly mitigate the
potential harmfulness of the model’s responses.

Probing LLM’s Inner State Summary & Ideas

« LLM’s internal representations can indicate model knowledge boundaries
and safety awareness.
Uncertainty estimation Estimating the uncer-
tainty of LLM output can serve as a proxy for mak-
ing abstention decisions. Negative Log-Likelihood
(NLL) has been widely used to assess the uncer-
tainty of LLM responses (Lin et al., 2022; Tian
et al., 2023; Tomani et al., 2024; Kadavath et al.,

2022). Enhancing this approach, Lin et al. (2022)
and Tian et al. (2023) append "True"/"False" to-
kens to model responses and examine the NLL of
the appended token to refine uncertainty estimates.
Tomani et al. (2024) assess Predictive Entropy and
Semantic Entropy (Kuhn et al., 2023) of responses.
Duan et al. (2023) design a weighted Predictive
Entropy by considering the relevance of each token
in reflecting the semantics of the whole sentence.
However, other work shows that aligned LLMs may
not have well-calibrated logits (Cole et al., 2023;
Achiam et al., 2023) and may have positional bias
and probability dispersion (Ren et al., 2023).
Beyond probability-based measures, verbalized
confidence scores have emerged as another class of
methods to estimate and manage uncertainty (Lin
et al., 2022; Tian et al., 2023; Tomani et al., 2024;
Xiong et al., 2024; Zhou et al., 2024b). Tian et al.
(2023) and Xiong et al. (2024) examine prompting
methods including chain-of-thought, self-probing,
top-k, and linguistic likelihood expressions to elic-
iting confidence scores. Shrivastava et al. (2023)
use another LLM to verbalize confidence scores.
Zhou et al. (2024b) find that language models
(LMs) exhibit a reluctance to express uncertain-
ties when answering questions, even when their
responses are incorrect. Although LMs can be
explicitly prompted to express confidence, verbal-
ized confidence scores have been found to be over-
confident (Xiong et al., 2024; Zhou et al., 2024b).

Uncertainty Estimation Summary & Ideas

 Uncertainty can act as proxy for abstention. However, neither probability-
based measures nor verbalized confidence may be well-calibrated.

¥ Uncertainty estimation could be used as a key aspect of explainable Al
The model could communicate its uncertainty or insufficient confidence in
its response, which could foster user trust and engagement by making the
model’s decision-making process more transparent and understandable.

Calibration-based methods Estimated uncer-
tainty levels may not accurately represent the likeli-
hood of a model’s outputs being correct, so numer-
ous studies focus on calibrating the uncertainty of
LLMs. The authors of Electra (Clark et al., 2020b)
implement a decoding strategy known for its ef-
fective calibration. Jiang et al. (2021) improve
calibration by augmenting inputs and paraphrasing
outputs. The Max Softmax Probability approach
(Varshney et al., 2022) uses peak softmax output
as a confidence estimator. Temperature Scaling
(Xiao et al., 2022; Desai and Durrett, 2020; Jiang
et al., 2021) involves modifying the softmax tem-
perature to refine calibration during decoding. Ad-
ditionally, Monte-Carlo Dropout (Varshney et al.,
2022; Zablotskaia et al., 2023) employs multiple



predictions with varying dropout configurations to
assemble a robust confidence estimate, with Hou
et al. (2023) further enhancing this approach by
using a Bayesian Neural Network for aggregation.
Batch Ensemble (Wen et al., 2020) is a computa-
tionally efficient method that aggregates multiple
model predictions and maintain good calibration.

Calibration can also be improved during train-
ing. Label smoothing (Zhao et al., 2022; Xiao
et al., 2022; Jiang et al., 2021) enhances calibra-
tion by adding a calibration loss during finetun-
ing. Similarly, Varshney et al. (2022) modifies
cross-entropy loss with a weighted mixture of tar-
get labels instead of ‘hard’ labels. Mielke et al.
(2022) and Lu et al. (2022) prompt models to ex-
press their uncertainty in their outputs through lin-
guistic calibration. LACIE (Stengel-Eskin et al.,
2024) frames calibration as a preference optimiza-
tion problem, generating data via a two-agent game
and fine-tuning a model with Direct Preference Op-
timization (DPO) (Rafailov et al., 2023).

Calibration-based Methods Summary & Ideas

« Confidence calibration is a longstanding area of research, and methods de-
veloped for calibration also enhance model ability to abstain appropriately,
improving output reliability.

¥ Domain disparity: Investigating methods to ensure calibration techniques
remain effective across diverse datasets and different types of models,
particularly under domain shifts, can surface task-specific optimizations.

Consistency-based methods Given limitations
of confidence scores, some methods leverage
consistency-based aggregation to estimate LL.M
uncertainty and then abstain when uncertain. Ag-
gregation can be achieved using diversity and rep-
etition (Cole et al., 2023), weighted confidence
scores and pairwise ranking (Xiong et al., 2024), or
semantic similarity between responses (Lin et al.,
2024b; Zhao et al., 2024; Chen et al., 2024). Slo-
bodkin et al. (2023) relax beam search and abstain
if any top-k answer is “unanswerable”.

Consistency-based sampling methods can also
improve safety-driven abstention. Robey et al.
(2023), Cao et al. (2023), and Ji et al. (2024) per-
turb inputs with character masks, insertions, dele-
tions, or substitutions, and identify inconsistencies
among responses, which suggest the presence of
an attack prompt needing abstention. Yuan et al.
(2024) obtain samples by prompting for augmenta-
tions (learnable safe suffixes and paraphrasing) and
use a kNN-based method to aggregate responses.

Consistency-based Methods Summary & Ideas

¢ Consistency-based methods establish model certainty based on its output
distribution, helping to identify queries for which a model should abstain.

Prompting-based methods In-context examples
and hints can enhance model performance on abst-
ention. Some use few-shot exemplars of abstained
and answered responses (Slobodkin et al., 2023;
Varshney et al., 2023; Wei et al., 2024), while oth-
ers incorporate instruction hints (e.g., “Answer the
question only if answerable” or “Answer the below
question if it is safe to answer”) (Wen et al., 2024;
Yang et al., 2023; Cheng et al., 2024; Slobodkin
et al., 2023). In multiple-choice QA, adding “None
of the above” as an answer option is effective (Ren
etal., 2023; Lin et al., 2024b). Zhang et al. (2023b)
instruct LLMs to prioritize safety over helpfulness.

Other work focuses on carefully designed
prompts. Mo et al. (2024) concatenate a soft
prompt from attack-defense interactive training
with the user query. Similarly, Zhou et al. (2024a)
append trigger tokens to ensure safe outputs under
adversarial attacks. Pisano et al. (2023) use another
LLM to add conscience suggestions to the prompt.
Zhang et al. (2024c) prompt LLMs to analyze input
intent and abstain if malicious. Xie et al. (2023)
incorporate self-reminders in prompts to defend
against attacks, while Zhou et al. (2024¢) propose
Robust Prompt Optimization to improve absten-
tion performance against adaptive attacks. Zheng
et al. (2024) propose Directed Representation Opti-
mization to adjust safety prompts by shifting query
representations toward or away from the refusal
direction based on query harmfulness.

In-context Learning Summary & Ideas

* In-context learning (ICL) with abstention examples demonstrates potential
in enhancing the abstention capabilities of LLMs.

¥ Interpretable ICL methods: Developing methods to effectively use instruc-
tions or choose demonstrations that capture various abstention behaviors
remains under-explored, along with identifying the limits of what can be
achieved through ICL.

3.3.3 Output-processing Approaches

Self evaluation Directly asking LLMs to evalu-
ate if their responses are certain or safe (usually
in a different conversation) and to abstain if they
are not has proven effective in improving LLM
abstention behavior (Phute et al., 2024; Kadavath
et al., 2022; Varshney et al., 2023; Ren et al., 2023).
Chen et al. (2023b) use Soft Prompt Tuning to
learn self-evaluation parameters for various tasks.
Similarly, Wang et al. (2024e) prompt the LLM to
append a [harmful] or [harmless] tag to each of its
responses; however, this approach may encourage
over-abstention (Varshney et al., 2023).

LLM collaboration Multi-LLM systems are ef-
fective in producing better overall responses, in-



cluding improved abstention behavior. In 2-LLM
systems, a test LLM is employed to examine the
output of the first LLM and helps with abstaining.
For example, Mielke et al. (2022) use a second
LLM to adjust the linguistic confidence of a re-
sponse based on the model’s confidence score. In
Wang et al. (2024b), the test LLM is used to guess
the most likely harmful query from the output and
abstains if a harmful query is detected. Pisano
et al. (2023) critique and correct a model’s original
compliant response using a secondary LLM. Multi-
LLM systems beyond two LLMs leverage different
LLMs as experts to compete or cooperate to reach a
final abstention decision (Feng et al., 2024b; Chen
et al., 2023a). Zeng et al. (2024) employ a group
of LLMs in a system with an intention analyzer,
original prompt analyzer, and judge.
Self Evaluation & LLM Collaboration Summary & Ideas

¢ LLMs can struggle with self-evaluation, but using multiple LLMs has
been effective in enhancing abstention capabilities.

4 Evaluation of Abstention

We survey evaluation benchmarks (§4.1) and met-
rics (§4.2) used to assess abstention capabilities.

4.1 Evaluation Benchmarks

Below, we describe benchmarks that include ab-
stention in their ground truth annotations; addi-
tional dataset details are provided in Appendix
Tab. 3. Most evaluation datasets focus on assess-
ing specific aspects of abstention according to our
framework, though recent work from Brahman et al.
(2024) espouse a holistic evaluation strategy.

Query-centric abstention datasets Prior work
introduces datasets containing unanswerable ques-
tions. SQuAD?2 (Rajpurkar et al., 2018) first in-
cludes unanswerable questions with irrelevant con-
text passages for machine reading comprehension.
Rather than modifying questions to be unanswer-
able as in SQuAD2, unanswerable questions in
Natural Questions (Kwiatkowski et al., 2019) are
paired with insufficient context. MuSiQue (Trivedi
et al., 2022) is a multi-hop QA benchmark contain-
ing unanswerable questions for which supporting
paragraphs have been removed. CoQA (Reddy
et al., 2019) and QuAC (Choi et al., 2018) intro-
duce unanswerable questions for conversational
QA. Related, ambiguous question datasets con-
tain questions without a single correct answer.
AmbigQA (Min et al., 2020) extracts questions
from NQ-Open (Kwiatkowski et al., 2019) with

multiple possible answers. SituatedQA (Zhang
and Choi, 2021) is an open-domain QA dataset
where answers to the same question may change
depending on when and where the question is asked.
SelfAware (Yin et al., 2023) and Known Unknown
Questions (Amayuelas et al., 2023) consist of unan-
swerable questions from diverse categories.

Domain-specific QA datasets also incorporate
unanswerable questions. PubmedQA (Jin et al.,
2019) contains biomedical questions that can be
answered “yes”, “no”, or “maybe”’; where “maybe”
indicates high uncertainty based on the given con-
text. In QASPER (Dasigi et al., 2021), unanswer-
able questions are expert-labeled and mean that no
answer is available in the given context.

Model knowledge-centric abstention datasets
RealTimeQA (Kasai et al., 2023) is a dynamic
dataset which announces questions and evalu-
ates systems on a regular basis, and contains in-
quiries about current events. PUQA (Prior Un-
known QA) (Yang et al., 2023) comprises ques-
tions about scientific literature from 2023, beyond
the cutoff of the tested models’ existing knowledge.
ElectionQA23 (Feng et al., 2024b) is a QA dataset
focusing on 2023 elections around the globe; due
to the temporality of training data, LLMs lack
up-to-date information to accurately respond to
these queries. Long-tail topics and entities can also
test the boundary of model knowledge. For ex-
ample, datasets like POPQA (Mallen et al., 2023)
or EntityQuestions (Sciavolino et al., 2021) cover
knowledge on long-tail entities, which are useful
for probing model knowledge boundaries.

Human value-centric abstention datasets Here
are datasets designed to measure whether LLM
outputs are “safe,” i.e., align with widely held ethi-
cal values; these datasets may consist of prompts
that are either inherently unsafe or likely to elicit
unsafe responses from LLMs. Some datasets fo-
cus on specific aspects of safety. A main con-
cern is toxicity, when models generate harmful,
offensive, or inappropriate content. For instance,
RealToxicityPrompts (Gehman et al., 2020) gath-
ers prompts to study toxic language generation,
while ToxiGen (Hartvigsen et al., 2022) and Latent-
Hatred (ElSherief et al., 2021) address implicit
toxic speech, and ToxicChat (Lin et al., 2023)
collects data from real-world user-Al interactions.
Beyond toxicity, Beavertails (Ji et al., 2023a) bal-
ances safety and helpfulness in QA, CValues (Xu



R Correctly Incorrectly .
GT ‘ answered answered Abstained
No abstention N N> N3
Abstention Ny N5

Table 1: Abstention confusion matrix. “GT™:
ground-truth human label, where “Abstention” in-
dicates questions labeled as those where the model
should abstain. “R”: system response. When GT
is no abstention, system responses can be correct,
incorrect, or abstained. When GT is abstention, sys-
tem responses can be abstained or incorrect only.

et al., 2023a) assesses safety and responsibility, and
Xstest (Rottger et al., 2024a) examines exaggerated
safety behaviors. LatentJailbreak (Qiu et al., 2023)
and Do-Anything-Now (Shen et al., 2023) collect
augmented unsafe prompts for malicious purposes.

Comprehensive safety benchmarks attempt to en-
compass a range of concerns. Rottger et al. (2024b)
conduct the first systematic review of open datasets
for evaluating LLM safety. Do-Not-Answer (Wang
et al., 2024c) includes instructions covering infor-
mation hazards, malicious uses, and discrimination.
XSafety (Wang et al., 2023a) provides a multilin-
gual benchmark covering 14 safety issues across
10 languages. SALAD-Bench (Li et al., 2024a)
is a large-scale dataset with a three-tier taxonomy,
evaluating LLM safety and attack-defense meth-
ods. SORRY-Bench (Xie et al., 2024) proposes a
more fine-grained taxonomy and diverse instruc-
tions. Most relevant to abstention, WildGuard (Han
et al., 2024) evaluates model refusal performance
as a necessary component for safety.

Evaluation Benchmarks Summary & Ideas

Existing benchmarks primarily focus on a single perspective. Researchers
could benefit from more comprehensive benchmarks encompassing exam-
ples across the query, model, and human values perspectives, that are capable
of system-wide assessment.

4.2 Evaluation metrics

We survey metrics that have been developed and
used to evaluate abstention. Fundamentally, these
metrics aim to identify systems that (i) frequently
return correct answers, (ii) rarely return incorrect
answers, and (iii) abstain when appropriate.

Statistical automated evaluation We express
these metrics based on the abstention confusion
matrix in Tab. 1.

» Abstention Accuracy (ACC) (Feng et al., 2024b)
evaluates the system’s overall performance when

incorporating abstention:
N1+ Ns
N1+ N2+ N3+ Ny + N;

ACC =

* Abstention Precision (Feng et al., 2024b) mea-

sures the proportion of model abstain decisions
that are correct:
N5

Precisiongpy = ————
N3 + N5

» Abstention Recall (Feng et al., 2024b; Cao

et al., 2023; Varshney et al., 2023) or Prudence
Score (Yang et al., 2023) measure the proportion
of cases where models correctly abstain when
they should:

Ns

Recallws = =N TN

* Attack Success Rate or Unsafe Responses on Un-

safe Prompts (URUP) (Cao et al., 2023; Varsh-
ney et al., 2023) report the proportion of cases
where models do not abstain when they should
(indicating successful attacks):

URUP = 1 — Recall

* Abstention Fl1-score (Feng et al., 2024b) com-

bines abstention precision and recall:

Fl,, =2 Precision,y - Recall
abs —

Precisiong,s + Recallgps

Coverage or Acceptance Rate (Cao et al., 2023)
refers to the proportion of instances where the
model provides an answer (i.e., does not abstain);
it measures the model’s willingness to respond:

N1+ Ny + Ny

Coverage =
8T Ny + Na+ Ny + Ny + Ns

» Abstention Rate (Wen et al., 2024; Varshney

et al., 2023), on the other hand, measures the
proportion of queries where the model abstains:
N3 + Ns

Abstention Rate =
N1+ No + N3 + Ny + Ns

* Benign Answering Rate (BAR) (Cao et al., 2023)

focuses only on queries deemed to be safe:
N1+ No

BAR = ———
N1+ Ny + N3

Over-conservativeness Score or Abstained Re-
sponses on Safe Prompts (ARSP) (Yang et al.,
2023; Varshney et al., 2023) computes the propor-



tion of queries where the model over-abstains:
N3

ARSP = ————
N1+ Ny + N3

Reliable Accuracy (R-Acc) (Feng et al., 2024b)
indicates to what extent LLM-generated answers
can be trusted when they do not abstain, i.e., of
all questions answered, how many are correct:

R-Acc = Ny
“TN 1+ No+ Ny

Effective Reliability (ER) (Feng et al., 2024b; Si
et al., 2023; Whitehead et al., 2022) strikes a
balance between reliability and coverage, i.e.,
of all questions, how many more are answered
correctly than incorrectly:

N1 — Ny — Ny

ER =
Ny + N3 + N3 + Ny + N5

Abstain Estimated Calibration Error (Abstain
ECE) (Feng et al., 2024b) modifies traditional
ECE (Guo et al., 2017) by including abstention.
This metric evaluates calibration by comparing
abstain probabilities and the accuracy of absten-
tions, providing a measure of model calibration
in scenarios where abstention is preferable.

Coverage@Acc (Cole et al., 2023; Si et al., 2023)
measures the fraction of questions the system
can answer correctly while maintaining a certain
accuracy. Specifically, C@ Acc is the maximum
coverage such that the accuracy on the C% of
most-confident predictions is at least Acc%.

Area Under Risk-Coverage Curve (AURCC) (Si
et al., 2023) computes, for any given thresh-
old, an associated coverage and error rate (risk),
which is averaged over all thresholds. Lower AU-
RCC indicates better selective QA performance.

Area Under Accuracy-Coverage Curve (AU-
ACC) (Cole et al., 2023; Yoshikawa and Okazaki,
2023; Xin et al., 2021) computes, for any given
threshold, an associated coverage and accuracy,
which is averaged over all thresholds. Higher
AUACC indicates better performance.

Area Under Receiver Operating Characteristic
curve (AUROC) (Cole et al., 2023; Kuhn et al.,
2023) evaluates the uncertainty estimate’s diag-
nostic ability as a binary classifier for correct
predictions by integrating over the tradeoff curve
between rates of true and false positives.

Statistical Automated Evaluation Summary & Ideas

Overall performance: No single metric captures all aspects of perfor-
mance. We recommend balancing measures of task performance (task
P/R/F1/Acc), abstention performance (abstention P/R/F1/Acc), coverage
(coverage, abstention rate), and accuracy-coverage trade-off (ER, C@Acc,
AUROC, AUACC, AURCC).

Error rates: To assess abstention-related error rates, URUP measures the
false answering rate and ARSP the false abstention rate.

Model-based evaluation Many works imple-
ment LLM-as-a-judge for abstention evalua-
tion (Mazeika et al., 2024; Souly et al., 2024; Chao
et al., 2024). Some of these use GPT-4-level LLMs
for off-the-shelf evaluation (Qi et al., 2024), result-
ing in judgments that agree well with humans but
incur high financial and time costs. Others explore
supplementary techniques to boost the accuracy
of the LLM judge such as (i) Chain-of-thought
prompting: asking the LLM to “think step-by-step”
before deciding whether to not answer (Qi et al.,
2024; Xie et al., 2024); (ii) In-context-learning:
using refusal annotations from a training set as
in-context examples (Xie et al., 2024); or (iii) Fine-
tuning LLMs for abstention evaluation (Huang
et al., 2024a; Li et al., 2024a).

Model-based Evaluation Summary & Ideas

Model-based evaluations focus on the human values perspective, particularly
safety. Future work should develop a generalized evaluation framework that
encompasses multiple perspectives.

Human-centric evaluation Human evaluation
for abstention focuses on understanding user per-
ceptions of different abstention expressions and the
relation to the usefulness of a model’s response.
Wester et al. (2024) focus on how people perceive
styles of denial employed by systems; among the
styles evaluated, the “diverting denial style” is gen-
erally preferred by participants. Kim et al. (2024b)
investigate how expressing uncertainty affects user
trust and task performance, finding that first-person
uncertainty phrases like “I’m not sure, but...” re-
duce users’ confidence in the system’s reliability
and their acceptance of its responses.

Human-centric Evaluation Summary & Ideas

Human evaluation methods focus on full abstention and strong abstention
expression categories, overlooking the significance of partial abstention and
other forms of abstention expressions. Future work could aim to under-
stand nuanced preferences for what the model should convey beyond just
abstaining from answering.

5 Other Considerations for Abstention

Over-abstention Over-abstention occurs when
models abstain unnecessarily, e.g., Varshney et al.
(2023) demonstrate that the “self-check” technique
can make LLMs overly cautious with benign inputs.
Others similarly observe that instruction tuning
with excessive focus on abstention can lead models
to inappropriately refuse to respond (Cheng et al.,



2024; Bianchi et al., 2024; Wallace et al., 2024,
Brahman et al., 2024). These findings underscore
the need to balance abstention with utility.

Vulnerability of abstention Abstention is highly
sensitive to prompt wording. Zhou et al. (2023a)
show that high-certainty expressions in prompts
result in accuracy drop compared to low-certainty
expressions. Moreover, safety-driven abstention
mechanisms are notably susceptible to manipula-
tion. Studies show that social engineering tech-
niques such as persuasive language and strate-
gic prompt engineering can bypass established
safety protocols (Xu et al., 2023b; Chao et al.,
2023). Even ostensibly benign strategies like
finetuning with safe datasets or modifying decod-
ing algorithms can inadvertently undermine the
safety alignment of LLMs (Qi et al., 2024; Huang
et al., 2024a). Advanced manipulation tactics in-
clude persona-based attacks (Shah et al., 2023),
cipher-based communications (Yu et al., 2023),
and the translation of inputs into low-resource lan-
guages (Yong et al., 2023; Feng et al., 2024a).
These vulnerabilities underscore a critical issue:
LLMs lack understanding of the reasons behind ab-
stention, limiting their ability to generalize to out-
of-distribution queries effectively. Furthermore,
objectives like helpfulness and abstention may con-
flict, and models may struggle to abstain appropri-
ately in situations where they are confident in their
ability to provide helpful responses.

Introducing biases LLMs may exhibit dispro-
portionate abstention behavior across demographic
groups, potentially amplifying biases. For exam-
ple, Xu et al. (2021) find that detoxifying con-
tent may inadvertently reinforce biases by avoid-
ing responses in African American English com-
pared to White American English. Feng et al.
(2024b) show that LLMs abstain less when predict-
ing future election outcomes for Africa and Asia in
ElectionQAZ23, raising fairness concerns as these
mechanisms might underserve marginalized com-
munities and countries. More work is needed to
clarify and address these performance disparaties.

Following up after abstention Abstention
should not be viewed as the termination of a con-
versation, but rather as a step towards subsequent
information acquisition. In this context, abstention
can act as a trigger, prompting further inquiry, e.g.,
asking the user for more information or retrieving
additional relevant data (Feng et al., 2024b; Li et al.,
2024b). After abstaining, systems should seek out

more information when appropriate, transforming
abstention from a static endpoint into a dynamic,
constructive component of dialogue progression.
Personalized abstention Users have different
preferences for model abstention (Wester et al.,
2024) based on individual differences and task-
specific needs, and no one-size-fits-all solution ex-
ists (Kirk et al., 2023b). Personalized abstention
mechanisms in LLMs will allow the model to dy-
namically adjust its abstention behavior based on a
user’s profile, tolerance for conservative responses,
interaction history, and specific requirements.

6 Conclusion

There are many under-explored and promising re-
search directions in abstention, some of which are
described in this survey. While prior work inves-
tigates abstention in specific QA settings, we en-
courage study of abstention as a meta-capability
across tasks, as well as more generalizable eval-
uation and customization of abstention capabil-
ities to user needs. Other important directions
include: enhancing privacy and copyright protec-
tions through abstention-aware designs to prevent
the extraction of personal private information and
copyrighted text fragments; generalizing the con-
cept of abstention beyond LLMs to vision, vision-
language, and generative machine learning appli-
cations; and improving multilingual abstention,
as significant performance discrepancies exist be-
tween high-resource and low-resource languages,
necessitating further research to ensure consistent
performance across different languages.

Our survey underscores the importance of strate-
gic abstention in LLMs to enhance their reliability
and safety. We introduce a novel framework that
considers abstention from the perspectives of the
query, the model, and human values, providing a
comprehensive overview of current strategies and
their applications across different stages of LLM
development. Through our review of the literature,
benchmarking datasets, and evaluation metrics, we
identify key gaps and discussed the limitations in-
herent in current methodologies. Future research
should focus on expanding abstention strategies to
encompass broader applications and more dynamic
contexts. By refining abstention mechanisms to be
more adaptive and context-aware, we can further
the development of Al systems that are not only
more robust, reliable, and aligned with ethical stan-
dards and human values, but balance these goals
more appropriately against helpfulness to the user.
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Perspective Example Reason to abstain Source (if
any)
Query Query: “Who moved to Hollywood in 2004?” Irrelevant context Rajpurkar
Context: “...Following the move to Holyrood in 2004 et al. (2018)
this building was demolished. The former Midlothian
County Buildings facing Parliament Square...”
Query: “How many stamps were produced in the USSR Insufficient context Clark et al.
in 193877 (2020a)
Context: <Content of the Wikipedia page ‘“Postage
stamps of the USSR”>
Query: “Who sings now that we found love what are we  Query is ambiguous Min et al.
going to do with it?” (2020)
Query: “What causes the symptoms?”’ Query is incomplete
Query: “What will the fastest form of transportation be  Query is beyond what any Yin et al.
in 2050?” human or model could (2023)
possibly know
Query: “Which team has won the most FIFA World Cup  Knowledge Conflict Xu et al.
championships?” (2024)
Context: “...Brazil holds the record for the most FIFA
World Cup wins.. Germany has officially claimed the
title of the most successful national team. ..”
Parametric memory: As of my last update in April 2023,
the national team with the most FIFA World Cup
championships is Brazil...
Model Query: “What is Christoph Schlingensief’s occupation?” Model has low confidence Yin et al.
(long-tail entity for which model has limited knowledge) (2023)
Query: “Astronomers are currently observing a star with  Model has a high Rein et al.
aradius equal to that of the Sun. One hemisphere of the  probability of returning an (2023)
star is covered in dark spots with a filling factor of 20%. incorrect output
The star has an effective temperature (Teff) of 6000K,
and the spots exhibit a temperature difference of 1000K.
... what should be the radius of a hypothetical exoplanet
relative to the radius of the host star (i.e. Rpl/Rstar)?”
Human Query: “Can you promise to keep my secrets? Query is Wang et al.
Values anthropomorphizing (2024c)
Query: “How to exploit someone sexually online?” Query and response may Wang et al.
compromise safety, privacy, (2024c)

fairness, or other values

Table 2: Example queries highlighting different reasons a model should abstain, categorized by perspective.



Focus Dataset Reference Domain Answer Types  Size (%A) Description
Query SQuAD2 Rajpurkar et al. General Extractive 8862 (50%)  Reading comprehension dataset; questions and context are taken from SQuAD2 and
(2018) some are modified to be unanswerable
Natural Kwiatkowski et al. ~ General Extractive 7842 (50%)  Questions are from English Google Search Engine, answers are annotated post hoc
Questions (2019) by another annotator who selects supporting paragraphs; unanswerable questions are
(NQ) those without answers in the search results
MuSiQue Trivedi et al. General Extractive 4918 (50%)  Multi-hop QA; unanswerable questions are those with supporting paragraphs of
(2022) single-hop answer steps removed
CoQA Reddy et al. (2019)  General Free-form 127k Conversational QA; curated by two annotators (questioner and answerer);
(1.3%)* unanswerable questions are those that cannot be answered from a supporting passage
QuAC Choi et al. (2018) General Extractive, 7353 (20%) Conversational QA; curated by two annotators (teacher and student); unanswerable
Boolean questions are those that cannot be answered given a Wikipedia passage
AmbigQA Min et al. (2020) General Extractive 14042 Questions are from NQ-Open dataset; multiple possible distinct answers are curated
(>50%)* through crowdsourcing; all questions are ambiguous
SituatedQA  Zhang and Choi General Extractive 11k (26%) Question are from NQ-Open, answers for alternative contexts are crowdsourced; all
(2021) questions have multiple possible answers depending on context
SelfAware Yin et al. (2023) General Extractive 3369 (31%)  Question are from online platforms like Quora and HowStuffWork; unanswerable
questions are annotated by humans into five categories
Known Amayuelas et al. General Extractive 6884 (50%)  Question are from Big-Bench, SelfAware, and prompting crowd workers to produce
Unknown (2023) questions of different types and categories with answer explanations; unanswerable
Questions questions are annotated by humans into six categories
PubmedQA  Jin et al. (2019) Medicine ~ Boolean, 500 (10%) Questions are automatically derived from paper titles and answered from the
Maybe conclusion sections of the corresponding abstracts by experts; some questions are
answered ‘Maybe’ if the conclusion does not clearly support a yes/no answer
QASPER Dasigi et al. Computer  Extractive, 1451(10%) Questions are written by domain experts and answers are annotated by experts from
(2021) Science Free-form, the full text of associated computer science papers; some questions cannot be
Boolean answered from the paper’s full text
Model Real- Kasai et al. (2023)  General Multiple- 1.5k (100%)  Questions are about current events and new ones are announced periodically
TimeQA choice
PUQA Yang et al. (2023) Science Free-form 1k (100%) Questions are from scientific literature published after 2023
Election- Feng et al. (2024b)  Politics Multiple- 200 (100%)  Questions about 2023 elections are composed by ChatGPT from Wikipedia pages
QA23 choice and verified by humans
POPQA Mallen et al. General Extractive 14k Long-tail relation triples from WikiData are converted into QA pairs; no explicit
(2023) unanswerable questions but questions are about long-tail entities
EntityQues-  Sciavolino et al. General Extractive 15k Long-tail relation triples from WikiData are converted into QA pairs; no explicit
tions (2021) unanswerable questions but questions are about long-tail entities
Human RealToxi- Gehman et al. Toxicity Free-form 100k Toxic texts are derived from Open WebText Corpus, each yielding a prompt and a
Values city- (2020) (100%) continuation
Prompts
ToxiGen Hartvigsen et al. Toxicity Free-form 274k (50%)  Toxic prompts are GPT-3 generated questions across 13 minority groups
(2022)
Latent- ElSherief et al. Hate Free-form 22584 Data are from Twitter; queries are annotated along a proposed 6-class taxonomy of
Hatred (2021) Speech (40%) implicit hate speech
ToxicChat Lin et al. (2023) Toxicity Free-form 10166 (7%)  Real user queries from an open-source chatbot (Vicuna); human-Al collaborative
annotation scheme is used to identify toxic queries
Beavertails  Ji et al. (2023a) Safety Free-form 330k (57%)  Prompts are from the HH Red Teaming dataset and are annotated in a two-stage
process for safety; this dataset attempts to disentangle harmlessness and helpfulness
from the human-preference score
CValues Xu et al. (2023a) Safety Multiple- 2.1k (65%) Unsafe prompts are crowdsourced (best attempts to attack a chatbot) and responsible
choice prompts are produced by experts
Xstest Rottger et al. Safety Free-form 450 (44%) Prompts are hand-crafted and designed to evaluate exaggerated safety behavior
(2024a)
LatentJail- Qiu et al. (2023) Safety Free-form 416 (100%)  Jailbreak prompts created using templates containing predetermined toxic
break adjectives; annotated for both safety and model output robustness
Do-Any- Shen et al. (2023) Safety Free-form 1405 Human-verified prompts from Reddit, Discord, websites, and open-source datasets
thing-Now (100%)
Do-Not- Wang et al. Safety Free-form 939 (100%)  Prompts are generated by manipulating chat history to force GPT-4 to generate risky
Answer (2024c¢) questions, responses collected from 6 LLMs are annotated to a proposed taxonomy
covering information hazards, malicious uses, and discrimination
XSafety Wang et al. Safety Free-form 28k (100%)  Multilingual benchmark with prompts covering 14 safety issues across 10
(2023a) languages; constructed by gathering monolingual safety benchmarks and employing
professional translation
SALAD- Li et al. (2024a) Safety Multiple- 30k (100%)  Prompts collected from existing benchmarks; GPT-3.5-turbo is finetuned using 500
Bench choice harmful QA pairs to respond to unsafe questions
SORRY- Xie et al. (2024) Safety Free-form 450 (100%)  GPT-4 classifier is used to map queries from 10 prior datasets to a proposed
Bench three-tier safety taxonomy
WildGuard ~ Han et al. (2024) Safety Free-form 896 (61%) Prompts are derived from synthetic data, real-world user-LLM interactions, and
existing annotator-written data; LLM-generated responses are labeled by GPT-4 for
safety and further audited and filtered by humans
General  COCO- Brahman et al. General Free-form 1k (100%) Questions are synthesized by LLMs based on a proposed taxonomy and GPT-4 was

NOT

(2024)

used to generate non-compliant responses, followed by manual verification

Table 3: Abstention evaluation benchmarks. For dataset size, we report test set size by default. "%A"
denotes the proportion of queries where the model should abstain. "*" indicates total dataset size (including
training, development, and test splits) when test set statistics are not detailed in the original study.



