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BACKGROUND AND OBJECTIVES: The goal of this study was to develop a highly precise, dynamic machine learning 
model centered on daily transcranial Doppler ultrasound (TCD) data to predict angiographic vasospasm (AV) in the 
context of aneurysmal subarachnoid hemorrhage (aSAH).
METHODS: A retrospective review of patients with aSAH treated at a single institution was performed. The primary 
outcome was AV, defined as angiographic narrowing of any intracranial artery at any time point during admission from 
risk assessment. Standard demographic, clinical, and radiographic data were collected. Quantitative data including mean 
arterial pressure, cerebral perfusion pressure, daily serum sodium, and hourly ventriculostomy output were collected. 
Detailed daily TCD data of intracranial arteries including maximum velocities, pulsatility indices, and Lindegaard ratios 
were collected. Three predictive machine learning models were created and compared: A static multivariate logistics 
regression model based on data collected on the date of admission (Baseline Model; BM), a standard TCD model using 
middle cerebral artery flow velocity and Lindegaard ratio measurements (SM), and a machine learning long short term 
memory (LSTM) model using all data trended through the hospitalization.
RESULTS: A total of 424 patients with aSAH were reviewed, 78 of whom developed AV. In predicting AV at any time 
point in the future, the LSTM model had the highest precision (0.571) and accuracy (0.776), whereas the SM model had 
the highest overall performance with an F1 score of 0.566. In predicting AV within 5 days, the LSTM continued to have the 
highest precision (0.488) and accuracy (0.803). After an ablation test removing all non-TCD elements, the LSTM model 
improved to a precision of 0.824.
CONCLUSION: Longitudinal TCD data can be used to create a dynamic machine learning model with higher precision 
than static TCD measurements for predicting AV after aSAH.
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Cerebral angiographic vasospasm (AV) occurs in up to one-
third of patients who suffer from aneurysmal subarachnoid 
hemorrhage (aSAH) and can result in a significant morbidity

and mortality. 1-3 However, anticipation and treatment of AV re-
mains complex and challenging due to its rapid onset, variable clinical 
presentation, and suboptimal diagnostic tests. 4-6 Screening includes 
serial neurological examination often with ancillary testing. Trans-
cranial Doppler ultrasound (TCD) is noninvasive, inexpensive 
bedside imaging study that has been shown to be highly sensitive for 
AV and is supported by guideline recommendations. 7-11

Despite the awareness of AV and the various monitoring methods 
available, it may not be identified until patients are symptomatic 
from hypoperfusion or completed ischemic stroke, resulting in a 
combined morbidity and mortality rates of up to 33.7%. 12,13 In

ABBREVIATIONS: AV, angiographic vasospasm; BM, Baseline Model; 
CPP, cerebral perfusion pressure; DCI, delayed cerebral ischemia; LR, 
Lindegaard ratios; LSTM, learning long short term memory; MAP, mean 
arterial pressure; TCD, transcranial Doppler ultrasound.
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response, significant effort has gone into developing predictive 
models. 14-18 Ultimately, none of these models have achieved high 
enough performance scores to be reliably used in clinical practice.
Given the effectiveness of TCDs and the rapid advancements in 

artificial intelligence, we aim to use a longitudinal time series data 
set centered around TCD measurements to create a machine 
learning model that can accurately stratify aSAH patients ac-
cording to their risk of developing AV. The primary hypothesis is 
that a combination of clinical measurements and longitudinal 
TCD data are more predictive of AV than daily static TCD values.

METHODS

Patient Population
The following work was completed with the approval of our Institu-

tional Review Board and submitted in accordance with the Strengthening 
the Reporting of Observational Studies in Epidemiology (STROBE) re-
porting guidelines. Documented consent was waived by Institutional 
Review Board, given minimal risk to patients. A retrospective review of 
consecutive patients with aSAH admitted to the neurological intensive care 
unit (ICU) at our tertiary cerebrovascular referral center from 2015 to 2019 
was conducted. Given the novel method of machine learning analytics 
used, we did not perform any detailed analysis to calculate the number 
needed to power the study. Adult patients (18 years or older) who un-
derwent endovascular or microsurgical treatment of a ruptured intracranial 
aneurysm within 24 hours of admission and survived at least 7 days after 
admission were included. During admission in the neurological ICU, all 
patients underwent daily TCD, as well as standard of care critical care 
management according to American Heart Association guidelines, 19 in-
cluding ventriculostomy for hydrocephalus if clinically indicated. Patients 
were excluded if there were inadequate data in the electronic medical record 
or the patient died within 14 days of admission.

Definitions and Management of Vasospasm
For clarity, the following definitions were used in this study: Delayed 

cerebral ischemia (DCI) is defined as a neurological decline of at least 2 
points in the Glasgow Coma Scale or new focal neurological deficit that 
could not be explained by other causes such as intracranial hemorrhage, 
seizure, medication, metabolic, or other origin. 19,20 Most patients with 
suspected DCI underwent CT angiography, although in some patients 
with significant clinical concern, digital subtraction angiography was 
obtained without cross-sectional imaging. AV is the radiographic entity 
defined as focal arterial narrowing within the vessels comprising the Circle 
of Willis identified on cerebral angiography. All patients with suspected 
DCI were treated with induced hypertension and those with AV were 
treated with intra-arterial vasodilatory medications and/or mechanical 
balloon angioplasty at the discretion of the neurointerventionalist.

We elected to use AV as the primary outcome since AV represents an 
objective radiographic finding (compared with the clinical diagnosis of DCI). 
Of note, not all patients with suspected DCI showed evidence of AV. These 
patients were included in the study, but DCI without AV was not considered 
as a positive primary outcome regarding the developed prediction models.

Clinical and Physiological Data Collection
Standard demographic, clinical, and radiographic data were obtained. 

In total, 335 data elements were extracted for each patient, including daily

physiological quantitative metrics trended throughout each patient’s 
hospitalization including hourly vitals (among them intracranial pressure, 
mean arterial pressure [MAP], and cerebral perfusion pressure [CPP] 
when available), daily mean serum sodium concentration, hourly external 
ventricular drain output, and daily TCD blood flow velocities of the 
cerebral vasculature. TCD measurements were obtained by highly trained 
technicians with a minimum of 5 years of experience. Studies were 
conducted every morning for the first 14 days of admission or until 
discharge from the ICU. More detailed description of the TCD protocol 
can be found in the Supplemental Digital Content 1 (http://links.lww. 
com/NEU/E915). Of note, no boundaries were used when collecting 
continuous, physiological data. Radiographic data obtained included 
intracranial aneurysm characteristics (maximum size, arterial location) 
and Fisher score. Clinical outcomes abstracted included modified Rankin 
Score at discharge, 6-month, and 1-year follow up. Intensive care and 
hospital length of stays were also recorded.

Statistical Analysis and Modeling
Extracted patient data were used to train predictive machine learning 

models. We experimented with using time series data as inputs and 
incorporating them into models that use both sparse (logistic regression) 
and dense feature representations (neural networks) for AV risk pre-
diction. Each model used patient representations from prior time points 
to predict the likelihood of AV during subsequent time points by 
sampling the predicted likelihood of these future events.

Given the small data set, we constructed fixed-duration time series 
segments by sampling with a moving window across the available dates for 
each patient. For example, given a patient who is observed for 14 days in 
whom AV occurred on day 10, we first subsampled the patient data using 
a 5-day window: days 1-5, days 2-6, … days 5-9, and used each win-
dowed segment to predict the risk of a future AV event. This method 
allows the creation of multiple training instances from the same patient, 
while addressing the challenge of training models to handle time series 
data of varying lengths (some participants have short hospital stays and 
earlier AV events, while others have much later events). All patient 
variables from the time series window were used as input into each model.

We constructed a model to predict the likelihood of AV occurring in the 
future (any day subsequent to the last day of the time series window). We 
divided all windowed time series into 80% train and 20% test splits while 
keeping all time series data associated with a particular patient in the same split.

We trained and evaluated logistic regression models and long short-term 
memory (LSTM) networks for AV prediction. As described above, the 
primary prediction outcome was angiographically confirmed vasospasm. For 
the multivariate logistics regression models, we trained one model using 
clinical/radiographic data from the day of admission (the “Baseline Model” 
[BM]) and one using bilateral middle cerebral artery (MCA) velocities and 
Lindegaard ratios (LR) 21 as measured by TCD (Standard TCD Model). We 
also trained an LSTM model using all clinical features as input. Precision, 
recall, accuracy, and F1 score were calculated for each model. To evaluate the 
feature influence of TCDs on the occurrence of AV, we trained LSTM 
models with and without TCDs and compared performance metrics to assess 
the influence of TCDs in the dense feature representation models.

RESULTS

Baseline Characteristics
The overall cohort included 424 patients, 78 of whom de-

veloped AV (18.4%). Of these 78 patients, 17 were asymptomatic
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and taken to the angiography suite due to elevated velocities on 
TCD. There were several differences in baseline demographic, 
clinical, and radiographic characteristics in the AV group sum-
marized in Tables 1 and 2. There were no differences in overall 
averages among any of the trended quantitative parameters 
monitored throughout the hospitalization including intracranial 
pressure, MAP, CPP, hourly venitriculostomy output, and TCD 
velocities (Table 3).

Clinical Outcomes
Although strokes rates were statistically similar between the 2 

populations (30.8% for the AV group and 5.2% for the non-AV 
group; P = .263), the AV group had longer hospital stay (32.4 ± 
20.5 days vs 23.1 ± 14.2 days; P < .001) and ICU stay (19.6 ± 
8.63 vs 14.4 ± 6.97 days; P < .001), as well as worse modified 
Rankin Score at discharge (3.46 ± 1.19 vs 2.92 ± 1.32; P = .003) 
and 6-month follow-up (2.40 ± 1.64 vs 1.75 ± 1.75; P = .025). 
There were no differences in long-term outcomes (Table 4).

Quantitative Trends
Line graphs depicting trends of quantitative metrics throughout 

ICU hospitalization identify several patterns (Figure 1). TCD 
values including bilateral LR, maximum bilateral MCA, vertebral 
artery, and basilar artery velocities were all higher in the AV group 
compared with the non-AV group. Furthermore, all measure-
ments showed notable elevation immediately before the occur-
rence of AV and all except for right vertebral artery velocities 
peaked immediately before the occurrence of AV. During the days 
leading up to an AV event, MAP and CPP noticeably increased 
relative to the non-AV group. Both groups showed similar 
numbers of red blood cells in the cerebrospinal fluid initially and

both down trended during the days after presentation; however, 
the AV group tended to have a higher count through admission.

Model Performance
The LSTM model demonstrated the highest precision in 

predicting AV at any time point during the ICU stay (0.683) and 
was the most accurate in predicting AV at any time point (0.786). 
The BM had the highest F1 score in predicting AV at any time 
point (0.566) (Figure 2).
An ablation experiment was conducted to further understand 

the performance of the LSTM model in predicting AV at any time 
point by creating an LSTM model that used TCD values only, as 
opposed to all trended data. After removing all non-TCD features, 
precision increased to 0.824, recall decreased to 0.139, and F1 
score decreased to 0.237 (Figure 3).

DISCUSSION

Prediction of AV and DCI after aSAH has been a topic of 
investigation since the inception of the Fisher score in 1980. 14 

Advantages to accurately predict patients who will suffer from AV 
after aSAH include prophylactic treatment and prevention of 
ischemic stroke. In addition, identifying patients at low risk for 
AV may permit shorter ICU and hospitalization times, resulting 
in cost and resource savings. Previous attempts have been made to 
apply complex data analytics and machine learning to AV pre-
diction. 22–25 However, these models have reached only a mod-
erate level of predictive capacity due to limited sample sizes, 
heterogenous data, and the use of data collected at a single time 
point. Recently, other models have been developed using time 
series physiological parameters such as systolic blood pressure,

TABLE 1. Comparison of Baseline Clinical Characteristics of AV and No AV Patients

Clinical characteristic AV (n = 78) [95% CI] No AV (n = 346) [95% CI] P value

Age, y, mean (SD) 52.9 [50.4, 55.4] 56.2 [54.8, 57.7] .023

Sex, % .055

Female 79.5 [68.8, 87.8] 69.4 [64.2, 74.2]

Male 20.5 [12.2, 31.2] 30.6 [25.8, 35.8]

BMI, kg/m 2 , mean (SD) 27.3 [25.8, 28.8] 28.5 [27.7, 29.2] .149

Tobacco use, % 35.9 [25.3, 47.6] 25.7 [21.2, 30.7] .048

Hypertension, % 47.4 [36.0, 59.1] 46.5 [41.2, 51.9] .689

Hunt-Hess, mean (SD) 3.51 [3.30, 3.73] 2.87 [2.76, 2.98] <.001

Fisher, mean (SD) 3.51 [3.40, 3.63] 3.20 [3.12, 3.28] <.001

GCS initial, mean (SD) 10.3 [9.47, 11.2] 11.9 [11.5, 12.3] .002

GCS 24 h, mean (SD) 10.6 [9.91, 11.4] 11.9 [11.5, 12.2] .002

AV, angiographic vasospasm; BMI, body mass index; GCS, Glasgow Coma Scale.
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heart rate, and respiratory rate trended throughout the patient’s 
ICU hospitalization to predict AV risk. 20 This concept is in-
triguing given the dynamic nature of AV and its variable time of 
onset. Furthermore, a dynamic model would provide continuous 
risk stratification throughout the patient’s hospitalization aiding 
in day-to-day prophylactic management. However, these previous 
models have all relied on physiological data such as vital signs which 
can be nonspecific and confounded by multiple factors, 26–28 

limiting their power.
TCD has been shown to be a safe, noninvasive, and effective 

method for screening for AV after aSAH. Several studies have 
validated its high sensitivity and negative predictive value 7-10 ; 
thus, it has been recommended by the American Heart 
Association/American Stroke Association (Class IIA/Level B 
evidence) 19 and Neurocritical Care Society. 29 At our institution, 
TCDs are performed daily on all patients with aSAH throughout

their 14-day ICU admission. Thus, we hypothesized that in-
corporating TCD data in a dynamic fashion may yield a predictive 
dynamic model that could be used in practice.
Long Short-Term Memory is a form of recurrent neural 

network that is able to recall past inputs in a data series that may 
influence future outcomes or events. 30 LSTM models have been 
successfully used in a wide range of healthcare fields including 
prediction of surgical site infections, 31 delirium onset, 32 and 
emergency department wait times. 33 In this study, we created an 
LSTM model using TCD data along with other relevant clinical 
and radiographic data to predict AV and compared it with 2 
conventional multivariate logistics regression models: One using 
clinical/radiographic data from the day of admission (BM) and 
one using baseline MCA velocities and LRs measured by TCD 
(Standard TCD Model). The rationale for the Standard TCD 
Model was current clinical practice, in which static MCA

TABLE 2. Comparison of Aneurysm and Treatment Characteristics Between AV and No AV Patients

Aneurysm/treatment characteristics AV (n = 78) [95% CI] No AV (n = 346) [95% CI] P value

Aneurysm location, anatomic, % .011

Anterior 91.0 [82.4, 96.3] 81.2 [76.7, 85.2]

Posterior 9.0 [3.68, 17.6] 18.5 [14.5, 23.0]

None 0 [0.00, 4.62] 0.3 [0.01, 1.60]

Aneurysm location, vessel, % .155

Middle cerebral artery 21.8 [13.2, 32.6] 14.7 [11.2, 18.9]

Internal carotid artery 7.7 [2.88, 16.0] 9.2 [6.41, 12.8]

Anterior communicating artery 34.6 [24.2, 46.2] 38.4 [33.3, 43.8]

Anterior cerebral artery/pericollosal 5.1 [1.41, 12.6] 3.2 [1.60, 5.62]

Posterior communicating artery 19.2 [11.2, 29.7] 15.3 [11.7, 19.6]

Posterior inferior cerebellar artery 2.6 [0.31, 8.96] 5.8 [3.57, 8.79]

Anterior inferior cerebellar artery 0 [0.00, 4.62] 0.6 [0.07, 2.07]

Basilar artery 6.4 [2.11, 14.3] 5.5 [3.34, 8.44]

Other 2.6 [0.31, 8.96] 7.2 [4.73, 10.5]

Aneurysm size, mm, mean (SD) 6.38 [3.45, 10.41] 6.95 [4.12, 12.67] .354

Intervention, % .025

Clip 57.7 [46.0, 68.8] 45.4 [40.0, 50.8]

Coil 41.0 [30.0, 52.7] 49.1 [43.7, 54.5]

Bypass 1.3 [0.03, 6.94] 3.2 [1.60, 5.62]

Parent vessel sac 0 [0.00, 4.62] 1.2 [0.32, 2.93]

Flow-diverting stent 0 [0.00, 4.62] 0.3 [0.01, 1.60]

None 0 [0.00, 4.62] 0.9 [0.18, 2.51]

AV, angiographic vasospasm.
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TABLE 3. Comparison of Trended Physiological Data Between AV and No AV Patients

Variable AV (n = 78) [95% CI] No AV (n = 346) [95% CI] P value

MAP, mm Hg, mean (SD) 101 [98.4, 103] 99.7 [98.6, 101] .442

CPP, mm Hg, mean (SD) 94.2 [91.6, 96.8] 93.4 [92.2, 94.6] .586

EVD output, cc/hour, mean (SD) 8.38 [7.72, 9.04] 8.72 [8.38, 9.05] .365

Lindegaard ratio, right, mean (SD) 3.08 [2.46, 3.71] 2.59 [2.44, 2.73] .126

Lindegaard ratio, left, mean (SD) 2.67 [2.42, 2.92] 2.58 [2.42, 2.73] .533

Max MCA velocity, right, cm/s, mean (SD) 98.9 [90.9, 107] 91.9 [88.2, 95.6] .118

Max MCA velocity, left, cm/s, mean (SD) 97.7 [91.2, 104] 93.9 [90.2, 97.6] .314

Max ICA velocity, right, cm/s, mean (SD) 68.7 [62.7, 74.8] 65.3 [62.6, 68.0] .303

Max ICA velocity, left, cm/s, mean (SD) 66.5 [61.5, 71.4] 64.4 [61.9, 66.9] .462

Max ACA velocity, right, cm/s, mean (SD) 75.7 [70.8, 80.6] 73.9 [71.2, 77.2] .522

Max ACA velocity, left, cm/s, mean (SD) 75.5 [69.8, 81.1] 74.5 [71.9, 77.2] .77

Max PCA velocity, right, cm/s, mean (SD) 49.0 [46.0, 51.9] 48.8 [47.0, 50.6] .925

Max PCA velocity, left, cm/s, mean (SD) 48.1 [45.5, 50.7] 48.3 [46.6, 50.0] .893

Max VA velocity, right, cm/s, mean (SD) 46.4 [43.2, 49.7] 44.4 [42.8, 46.0] .257

Max VA velocity, left, cm/s, mean (SD) 46.6 [43.1, 50.0] 43.5 [42.0, 45.0] .108

Max BA velocity, cm/s, mean (SD) 67.1 [62.4, 71.8] 62.9 [60.4, 65.4] .121

Na, average, mean (SD) 138 [138, 139] 138 [138, 138] .052

CSF, red blood cells, cells/µL, mean (SD) 70 581 [55 460, 85 703] 72 896 [64 998, 80 795] .788

CSF, nucleated, cells/µL, mean (SD) 511 [324, 698] 644 [528, 759] .231

CSF, glucose, mg/dL, mean (SD) 82.2 [78.8, 85.7] 80.6 [78.8, 82.5] .42

CSF, protein, mg/dL, mean (SD) 122 [90.7, 153] 113 [103, 123] .593

ACA, anterior cerebral artery; AV, angiographic vasospasm; BA, basilar artery; CPP, cerebral perfusion pressure; CSF, cerebrospinal fluid; EVD, external ventricular drain; ICA, internal 
carotid artery; MAP, mean arterial pressure; MCA, middle cerebral artery; Na, daily mean serum sodium concentration; PCA, posterior cerebral artery; VA, vertebral artery.

TABLE 4. Comparison of Clinical Outcomes Between AV and No AV Patients

Outcome AV (n = 78) [95% CI] No AV (n = 346) [95% CI] P value

Stroke, % 30.8 [20.8, 42.2] 5.2 [3.11, 8.10] .263

Hospital LOS, days, mean (SD) 32.4 [27.8, 37.0] 23.1 [21.5, 24.6] <.001

ICU LOS, days, mean (SD) 19.6 [17.7, 21.6] 14.4 [13.7, 15.2] <.001

mRS, discharge, mean (SD) 3.46 [3.16, 3.76] 2.92 [2.72, 3.11] .003

mRS, 6 months, mean (SD) 2.40 [1.89, 2.90] 1.75 [1.49, 2.01] .025

mRS, 1 year, mean (SD) 2.08 [1.47, 2.70] 1.50 [1.23, 1.78] .089

Mortality, % 7.7 [2.88, 16.0] 6.1 [3.80, 9.13] .624

AV, angiographic vasospasm; ICU, intensive care unit; LOS, length of stay; mRS, modified Rankin Scale.
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velocities and LR measurements have been shown to be most 
sensitive for AV. 34–36

We focused on one primary outcome in this study: The oc-
currence of AV at any time point during the patient’s admission. 
The metrics we used to evaluate the models were precision, recall, 
F1 score, and accuracy. Precision measures how a model correctly 
predicts the positive class, more commonly known as positive 
predictive value. Recall measures how often positive classes are 
correctly identified, more commonly known as sensitivity. F1 
score is a balance of a model’s precision and recall, therefore 
measuring its overall performance. Accuracy measures the how 
often the model is correct in identifying both positive and negative 
classes. In predicting AV at any time point, the BM had the 
highest overall performance with an F1 score of 0.566. However, 
the LSTM model had the highest precision at 0.571, meaning that 
it was relatively more successful at identifying patients who would 
develop AV. For context, an F1 score of greater than 0.9 is 
considered to be “very good,” whereas 0.5-0.7 is considered 
“average.” 37 By contrast, the LSTM model had the lowest recall 
score giving it a low sensitivity when compared with the other 
models. Although all 3 models had high accuracy score among the 
various metrics, accuracy can have a paradoxical meaning when 
working with highly imbalanced data sets where one outcome

FIGURE 1. Line charts depicting patterns of quantitative metrics comparing patients with vasospasm (dark pink, 1) and patients without vasospasm (light pink, 0). Day 0
(dotted line) represents the day of vasospasm. Lindegaard ratio is the maximum internal carotid artery velocity/maximum MCA velocity. CPP, cerebral perfusion pressure; 
CSF, cerebrospinal fluid; EVD, external ventricular drain; MAP, mean arterial pressure; VA, vertebral artery.

FIGURE 2. Model performance for predicting vasospasm at any time point
in the future. CV, cerebral vasospasm; LSTM, long short-term memory;
TCD, transcranial Doppler ultrasound.
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greatly outnumbers the other. In this case, there were significantly 
more patients who did not have AV vs those who did. Overall, 
these results suggest that the LSTM model is best for early 
identification of patients who may have AV with fewer misses than 
the other models and can be used for triaging patients who may 
benefit from closer monitoring or prophylactic treatment. On the 
other hand, given the lower recall score, this LSTM model would 
not be suited for ruling out AV in the future and, thus, would be 
suboptimal for identifying patients at low risk for developing AV.
To further understand the potential of our LSTM model, we 

performed an ablation study whereby the clinical/radiographic 
elements of the input were removed to isolate the TCD data. The 
LSTM model’s performance regarding precision was enhanced by 
using TCD data alone, which increased the precision score from 
0.683 to 0.824 when predicting AV at any time point. This 
dramatic improvement in the LSTM model performance high-
lights the positive predictive value of trended TCD measurements 
in correctly identifying patients who may develop AV. However, 
the concomitant decrease in F1 score may suggest using TCDs 
alone results in an over-fitted model that yields more false pos-
itives. The clinical implication of false positives is unnecessary 
preventative tests and treatments for AV, which adds additional 
risk to aSAH patient care. Thus, any final predictive model must 
be interpreted in the overall clinical context.
Although none of the models developed in this study 

achieved an F1 score greater than 0.8, the precision score of 
0.824 of the LSTM model using only TCD data implies that

there may be future value in using longitudinal (rather than 
static daily) TCD data to identify patients who are at high risk 
for AV, which can have significant impact on resource utili-
zation and clinical outcomes.

Limitations

There are several shortcomings to this study that, if optimized, 
may eventually yield a clinically applicable model. Data quality is a 
critical factor in creating a highly predictive machine learning 
algorithm. Owing to the retrospective nature of this study, 
suboptimal data quality could have contributed negatively to the 
performance in all aspects of the models. This would pertain more 
to the clinical and radiographic data, as opposed to the TCD data 
which is reported and collected in a more uniform fashion. For 
example, physiological data including MAP, CPPs, and laboratory 
values can be skewed by medication or other environmental 
factors, which are not controlled for due to the limitations of the 
chart review process, as evidenced by the improvement of the 
LSTM model when such elements were removed. Furthermore, 
although we attempted to amplify our data by segmenting patient 
data into multiple time windows, the relatively small sample size 
of this study hindered our ability to thoroughly train the algo-
rithm. To address these issues, we plan to perform a prospective 
study focusing on more precise collection of the clinical and 
radiographic data while enhancing the TCD data by including 
more granular waveform data. These adjustments will improve the 
precision of our models, potentially leading to application in 
clinical practice.

CONCLUSION

A dynamic machine learning model using time series data 
including daily TCD measurements may identify patients with 
aSAH who are at high risk for developing AV.
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