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Abstract

Multi-document summarization (MDS) as-
sumes a set of topic-related documents are pro-
vided as input. In practice, this document set
is not always available; it would need to be
retrieved given an information need, i.e. a ques-
tion or topic statement, a setting we dub “open-
domain” MDS. We study this more challenging
setting by formalizing the task and bootstrap-
ping it using existing datasets, retrievers and
summarizers. Via extensive automatic and hu-
man evaluation, we determine: (1) state-of-the-
art summarizers suffer large reductions in per-
formance when applied to open-domain MDS,
(2) additional training in the open-domain set-
ting can reduce this sensitivity to imperfect re-
trieval, and (3) summarizers are insensitive to
the retrieval of duplicate documents and the or-
der of retrieved documents, but highly sensitive
to other errors, like the retrieval of irrelevant
documents. Based on our results, we provide
practical guidelines to enable future work on
open-domain MDS, e.g. how to choose the
number of retrieved documents to summarize.
Our results suggest that new retrieval and sum-
marization methods and annotated resources
for training and evaluation are necessary for
further progress in the open-domain setting.1

1 Introduction

Summarization is an NLP task that aims to generate
accurate and coherent summaries for some given
text automatically. Multi-document summarization
(MDS) extends this task to provide multiple topic-
related documents as input, with the goal of sum-
marizing salient information while avoiding redun-
dancy. MDS is a popular research objective with
many proposed approaches (Yasunaga et al., 2017;
Liao et al., 2018; Liu and Lapata, 2019; Li et al.,
2020; Jin et al., 2020; Mao et al., 2020; Zhang et al.,
2020a; Pasunuru et al., 2021b; Xiao et al., 2022)

∗Work performed during internship at AI2
†Core contributors. See author contributions

1https://github.com/allenai/open-mds
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Figure 1: “Traditional” MDS assumes a topic-related
set of documents is given at train and test time. Here, we
investigate the more challenging “open-domain” setting,
where the document set must be retrieved given a query.

and important applications, e.g. the summarization
of news articles (Fabbri et al., 2019; Gholipour Gha-
landari et al., 2020), scientific literature (Lu et al.,
2020; Wallace et al., 2021; DeYoung et al., 2021),
and legal documents (Shen et al., 2022).

Existing MDS task definitions, including query-
focused MDS (see §3 for detailed comparison),
assume a ground-truth, topic-related document set
is provided at train and test time. This document set
is often an artifact of the dataset curation process;
in many practical settings, it is not available a priori
and would need to be defined by an information
need, expressed as a query.2 Documents relevant
to the query would need to be retrieved from a
large collection of (mostly irrelevant) documents
and summarized (Figure 1); a setting we refer to as
open-domain MDS.3 Because even state-of-the-art
information retrieval (IR) methods are imperfect,
errors, like the retrieval of irrelevant documents,
will occur. It is an open question how existing
summarizers behave under this more challenging
but realistic setting. Our major contributions are:

• We formalize the task definition of open-domain
MDS (§2), and bootstrap its study using existing

2E.g. a question: “Does vitamin D improve physical capa-
bilities of elderly patients?” or topic statement: “Report on
vulnerabilities of US power grid & efforts to improve it.”

3Inspired by the QA literature, where “open-domain” also
denotes the setting where only a query is provided as input
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datasets, retrievers and summarizers (§4);

• We evaluate summarizers in the open-domain
setting and find, through automated and human
evaluations, that performance degrades signifi-
cantly (§5). Promisingly, we show that additional
training in the open-domain setting can reduce
this sensitivity to imperfect retrieval (§6);

• Finally, we subject summarizers to an extensive
suite of carefully designed input perturbations to
determine which retrieval errors are driving the
degradation in summarization performance (§7)

Based on our results, we provide detailed, practical
guidelines for future work in open-domain MDS.
We release all code, model & data artifacts, and ex-
perimental results created during our investigation.

2 Task Definition: Open-domain MDS
In traditional MDS, a model is given a set of topic-
related documents D = {d1, ..., dk} and must gen-
erate a summary S that accurately and coherently
summarizes the information in D. Such models
are typically trained in a supervised fashion to
minimize the difference between S and a (usually
human-written) reference summary R. The goals
(and evaluation) remain the same in open-domain
MDS, but instead of D, the inputs are a query
q and a large index of documents Dindex, where
|Dindex| ≫ |D|. The specifics of q, Dindex, and S
will depend on the application or use-case. For
example, in automatic literature review (Wallace
et al., 2021; DeYoung et al., 2021), q would be a
research question or statement, e.g. “Is massage
therapy effective for people with musculoskeletal
disorders?”, Dindex would be a large corpus of sci-
entific literature (e.g. PubMed), and S would be a
literature review-style discussion, e.g. “Massage
therapy, as a stand-alone treatment, reduces pain
and improves function compared to no treatment...”

There are multiple ways to approach open-
domain MDS. We could think of q as a prompt
to a large language model (LLM) capable of in-
context learning (ICL, Brown et al. 2020); in which
case we can view Dindex as the LLMs training data
and retrieval as happening implicitly during infer-
ence. However, because all information is stored
in the model’s weights, this approach requires ex-
tremely large models, cannot produce summaries
for events outside the training data, and does not
provide provenance for the generated summaries.

Another approach is to introduce an explicit re-
trieval step over an external knowledge source,

which we will refer to as “retrieve-then-summarize.”
It works as follows: a retriever ranks all documents
in Dindex from most-to-least relevant given q. The
top-k documents are input to a summarizer; k is
a parameter that may be tuned for a particular use
case. This approach has some desirable properties:
(1) Dindex can be updated with new documents with-
out re-training the retriever or summarizer, and (2)
it provides provenance for model-generated sum-
maries: the top-k documents. In the remainder
of the paper, we focus our investigation on the
retrieve-then-summarize approach.

3 Related Work
Query-focused MDS In query-focused MDS
(QMDS, Wang et al., 2013; Feigenblat et al., 2017;
Xu and Lapata, 2020; Pasunuru et al., 2021a), a
query is provided alongside a set of topic-related
input documents and used to guide summarization.
For example, extractive QMDS methods use query
relevance to select the sentences that form the sum-
mary. No retrieval from a document index is per-
formed. Here, we propose and investigate the more
challenging scenario where, given only a query, the
input documents must be retrieved from a large
index containing mostly irrelevant documents.

Previous attempts at open-domain MDS Liu
et al. (2018) proposed the WikiSum dataset. Given
the title of a Wikipedia article and a collection of
non-Wikipedia reference documents, the goal is to
generate the first section of the article. The pro-
posed extractive-abstractive approach resembles
open-domain MDS. However, the document index
is small (10s to 100s of documents) and composed
of relevant documents (references of the article
plus ten pages of search results using the title as
query). We study the more challenging and more
general setting where the index is large (»10,000
documents, see Table 6) and contains many more
irrelevant documents than relevant documents.

In Zhang et al. (2021), a method similar to
retrieve-then-summarize is proposed, using a pre-
trained dense passage retriever (Karpukhin et al.,
2020) and T5 (Raffel et al., 2020) as summarizer.4

The model is trained & evaluated on a dataset con-
structed from existing QMDS datasets. This dataset
is small (∼90 training examples) and does not ap-
pear to be publicly available. Here, we conduct a
large-scale analysis on multiple datasets from dif-
ferent domains (each consisting of thousands of ex-

4At the time of writing, this work is unpublished



amples) and evaluate several of the top-performing
multi-document summarizers currently available
(§4). We also extensively simulate document re-
trieval errors to probe their relative impact on sum-
marization (§7). Together, this allows us to draw
broader conclusions about open-domain MDS and
provide detailed practical advice for future work.

Open-domain QA Our open-domain MDS pro-
posal mirrors a similar trend in question answer-
ing (QA). While earlier research focused on an-
swering questions provided a text passage (Ra-
jpurkar et al., 2016, 2018), the now predominant
approach, open-domain QA (ODQA), is to answer
questions without this passage, usually by referenc-
ing an external knowledge source (e.g. Wikipedia).
Even broader are knowledge-intensive (KI) lan-
guage tasks (Petroni et al., 2021), which include
ODQA but also, for example, fact-checking. KI
tasks are commonly approached with a retrieve-
then-generate framework (Guu et al., 2020; Lewis
et al., 2020b; Borgeaud et al., 2022). Retrieve-then-
summarize is similar, except that the outputs are, on
average, much longer and tend to be less extractive
than the outputs of KI language tasks like ODQA.

4 Bootstrapping Open-domain MDS
Since no large-scale annotated datasets5 or trained
models exist for open-domain MDS, we bootstrap
this task using existing datasets (§4.1) and mod-
els (§4.2, §4.3). We describe operationalization
considerations in §4.4 and evaluation in §4.5.

4.1 Datasets
We investigate a representative selection of 5 MDS
datasets comprised of news articles, medical stud-
ies, and scientific literature, deliberately choosing
datasets for which high-performing summarizers
exist (see Appendix A for more details). The inputs
of these datasets generally consist only of the doc-
uments to summarize. However, Multi-XScience
and MSˆ2 each provide additional text as input:
the target article’s abstract and the target review’s
background section. In our experiments, we always
provide this additional text and do not retrieve it.

4.2 Retrieval Models
Broadly speaking, retrievers are divided into two
categories, sparse & dense. Sparse retrievers de-
termine relevance of a document to a query using

5Existing query-focused MDS datasets (e.g. DUC 2005,
2006 & 2007) are extremely small (10s of examples) and are
therefore not suitable for the large-scale analysis we conducted

weighted counts of overlapping terms. Dense re-
trievers embed documents & queries into a shared
vector space and use proximity to determine rele-
vance. Retrievers from these families exhibit dif-
ferent characteristics and limitations (MacAvaney
et al., 2022); therefore, we investigate a represen-
tative retriever from each: BM25 (sparse, Robert-
son et al., 1994) and Contriever (dense, Izacard
et al., 2022). Both achieve strong zero-shot perfor-
mance,6 making them particularly suitable for our
purposes. See Appendix B for details.

4.3 Multi-document Summarization Models

All MDS models we experiment with are
transformer-based encoder-decoders (Vaswani
et al., 2017) trained for abstractive summarization,
representing the state-of-the-art approach. The in-
put contains one or more documents concatenated
with special tokens (e.g. <doc-sep>). As is typical,
we truncate each document based on the maximum
input length of the model divided by the total num-
ber of documents. See Appendix C for details.

4.4 Operationalize Retrieve-then-Summarize

To extend these datasets and models to the open-
domain setting and operationalize the retrieve-then-
summarize approach, we address the following:

How to choose a query? In open-domain MDS,
a query is anything that defines the documents to
summarize, e.g. a question or topic statement. Ide-
ally, a human-written query would be available
for each example in our dataset; however, exist-
ing MDS datasets do not provide these queries.
Therefore, we use R,7 the human-written reference
summaries, as pseudo-queries, as they naturally
describe the input documents of each example.8

How to assemble the document index? For our
purposes, we take the set of all documents in the
train, validation, and test splits of each dataset to
form Dindex. This guarantees that the ground-truth
documents for each example are present in the in-
dex while providing plenty of negative examples.

How many documents to summarize? The
number of retrieved documents to summarize, k,

6See the BEIR (Thakur et al., 2021) zero-shot benchmark
7Except for MSˆ2, where we found the provided “back-

ground” section to perform better as a query; see Appendix A
8We also experimented with query generation using

LLMs (e.g. GPT-3), but found that they significantly under-
performed the reference summary as query, e.g. by at least 8
points P/R@K on a sample of the Multi-News validation set

https://docs.google.com/spreadsheets/d/1L8aACyPaXrL8iEelJLGqlMqXKPX2oSP_R10pZoy77Ns/edit?usp=sharing


Table 1: Results of the open-domain MDS experiments. We observe the following: (1) retrieval performance ranges
from high (Multi-News, WCEP-10, dark blue) to low (Multi-XScience, MSˆ2, Cochrane), (2) when summarizers
trained on these datasets are provided retrieved documents, they suffer from significant drops in performance (dark
red); more severe performance drops were observed in cases where baseline summarization performance was
relatively high (dark green). Experiments here used a sparse retriever (BM25) and max top-k strategy (see Table 9
for complete results with all top-k strategies). Similar results were observed using a dense retriever (Contriever, see
Table 10). Statistically significant results are underlined (paired t-test, p = 0.01).

Retrieval Summarization

Dataset Model P@K R@K ROUGE-Avg F1 ∆ ROUGE-Avg F1 BERTScore F1 ∆ BERTScore F1

Multi-News PRIMERA 0.22 0.82 31.66 -7.39 31.78 -10.33
PEGASUS – – 31.23 -8.49 29.88 -10.87
LSG-BART-base – – 30.05 -6.44 26.57 -8.17
GPT-3.5-turbo – – 23.86 -2.46 21.68 -3.92

WCEP-10 PRIMERA 0.63 0.67 35.50 -1.02 48.26 -0.76
LSG-BART-base – – 35.76 -1.15 48.17 -0.85
GPT-3.5-turbo – – 26.36 -0.22 32.72 -0.25

Multi-XScience PRIMERA 0.06 0.40 18.31 -0.57 10.57 -1.82
MSˆ2 LED-base 0.16 0.22 19.66 -0.14 22.74 -0.47
Cochrane LED-base 0.17 0.57 17.39 -0.28 23.12 -2.11

is a parameter that can be tuned for different use
cases. To determine its impact on summarization
performance, we investigate three strategies:

• Max: Choose k as the maximum number of input
documents for any example in a given dataset.
Tends to select for recall at the cost of precision.

• Mean: Choose k as the mean number of input
documents for all examples in a given dataset.
Tends to select for precision at the cost of recall.

• Oracle: Choose k as the number of ground-truth
input documents for each example. This mimics
the scenario where all documents with a rele-
vance score (assigned by the retriever) above a
certain optimal threshold are retained.

We note that this is a highly idealized setting. Using
R as query leaks information about the reference
summary into the retrieval step, likely inflating
retrieval and summarization performance. In prac-
tice, Dindex will be much larger (e.g. PubMed-,
Wikipedia-, or even Web-scale), making retrieval
more difficult. Our intention is to determine a
lower-bound for the expected performance degra-
dation of state-of-the-art summarizers in the open-
domain setting; as we will show in §5, even this
idealized setting often leads to large reductions in
performance. In §7, we extensively simulate docu-
ment retrieval errors to determine how summarizers
behave in both low- and high-performing retrieval
settings across a variety of retrieval error types.

4.5 Evaluation
We follow previous work by evaluating summariza-
tion with ROUGE-1/2/L scores (Lin, 2004). To
provide a single metric for comparison, we report

ROUGE-Avg F1, the average F1-score of ROUGE-
1/2/L. We also report BERTScore (Zhang et al.,
2020b), which has been shown to better correlate
with human judgment (Yuan et al., 2021; Fischer
et al., 2022). For document retrieval, we report the
precision and recall at k (P@K and R@K); which
are suitable metrics when the input documents do
not have an inherent order, as is usually the case in
MDS. We evaluate on the test splits of each dataset,
except for MSˆ2 and Cochrane, where we evaluate
on the validation set because the test split is blind.

5 Evaluating Open-domain MDS
Here we present the results of our open-domain
MDS experiments. In general, we find existing
summarizers suffer large reductions in performance
when applied to open-domain MDS, even when
retrieval performance is high (Table 1).9 Below,
we provide key observations on how the individ-
ual components (retriever and summarizer) behave
within a retrieve-then-summarize framework.

Strong summarizers more sensitive to imper-
fect retrieval than weak ones We observe a rela-
tionship between a summarizer’s (baseline) perfor-
mance on a dataset and its sensitivity to imperfect
document retrieval (Table 1). The largest reduc-
tions in summarization performance were observed
for the most performant summarizers, despite re-
trieval performance being the highest in these cases.
However, this relationship is confounded by differ-
ences between datasets. To control for this, we con-
duct experiments comparing fine-tuned PRIMERA

9Results for sparse and dense retrievers were comparable
and exhibited similar trends. We elect to show results for the
sparse retriever; see Appendix E for dense retriever results



Table 2: Results of the open-domain MDS experiments with zero-shot summarizers. Controls for differences in
datasets and models, isolating the relationship between summarization performance in the traditional and open-
domain settings. Top-k strategy mean is used. Statistically significant results are underlined (paired t-test, p = 0.01).

Retrieval Summarization

Dataset Model Retriever P@K R@K ROUGE-Avg F1 ∆ ROUGE-Avg F1 BERTScore F1 ∆ BERTScore F1

Multi-News PRIMERA sparse (BM25) 0.64 0.74 31.66 -2.82 31.78 -4.08
dense (Contriever) 0.59 0.70 – -3.31 – -4.60

↪→ zero-shot sparse – – 23.58 -0.09 18.66 -0.39
dense – – – -0.27 – -0.44

WCEP-10 PRIMERA sparse 0.66 0.64 35.50 -0.90 48.26 -0.68
dense 0.66 0.63 – -0.14 – +0.68

↪→ zero-shot sparse – – 21.43 +0.35 25.48 +0.72
dense – – – +1.00 – +2.19

Multi-XScience PRIMERA sparse 0.16 0.27 18.31 -0.25 10.57 -1.27
dense 0.16 0.24 – -0.81 – -0.96

↪→ zero-shot sparse – – 15.18 +0.69 6.02 -0.47
dense – – – +0.46 – +0.00

Table 3: Comparing ROUGE-Avg F1 scores of model-generated summaries to heuristic baselines. In some cases,
heuristics perform surprisingly close to trained summarizers. All Lead is the concatenation of the first sentence
from each input document. Oracle document is the document with the highest token overlap with the reference
summary; oracle lead is the first sentence from this document. Background/Abstract is the additional input from
MSˆ2 and Multi-XScience. The best baseline for each dataset is bolded.

Baselines

Dataset Best Summarizer ∆ Random Summary ∆ All Lead ∆ Oracle Document ∆ Oracle Lead ∆ Background/Abstract

Multi-News 31.7 -18.3 -15.3 -4.1 -21.8 –
WCEP-10 35.8 -27.8 -24.4 -15.3 -9.9 –
Multi-XScience 18.3 -6.2 -5.0 -0.8 -9.3 -2.3
MSˆ2 19.7 -10.4 -11.0 -7.6 -4.0 -0.2
Cochrane 17.4 -5.0 -4.2 -3.9 -3.5 –

to PRIMERA evaluated zero-shot (Table 2).10 This
allows us to hold the dataset, model architecture,
and retriever constant, isolating the relationship
between summarization performance in the tradi-
tional and open-domain settings. Here, the trend is
clear: “strong” summarizers are more sensitive to
imperfect retrieval than “weak” summarizers.11

One explanation is that weak summarizers have
less to lose from imperfect retrieval, perhaps be-
cause they are not performing adequately even
when trained and evaluated on ground-truth inputs.
They may, to a greater degree than strong summa-
rizers: hallucinate, exploit heuristics, or use only a
fraction of the input documents (Kryscinski et al.,
2019; Wolhandler et al., 2022). To probe this, we
construct several baselines that mimic these be-
haviours. We find that, for example, copying the
background section of MSˆ2 performs comparably
to a trained model, suggesting that the observed
insensitivity to retrieval errors could be due to sum-
marizers exploiting this heuristic (Table 3, see Ap-
pendix E.1 for details). We observe a similar result

10The only model we evaluate with zero-shot capabilities
11We use “strong” and “weak” as shorthand to refer to cases

where summarization performance is high (e.g. PRIMERA on
Multi-News) and low (e.g. LED on Cochrane)

for Multi-XScience by copying the document with
the highest token overlap to the reference summary.
Future work should carefully establish that summa-
rizers are performing adequately before attempting
the more difficult open-domain setting.

Better retrieval performance ̸= better summa-
rization performance Performance of the sparse
and dense retrievers was generally comparable (Ta-
ble 7), with the sparse retriever performing better
on some datasets (Multi-News, WCEP-10, Multi-
XScience, see Table 9) and the dense retriever per-
forming better on others (MSˆ2, Cochrane, see Ta-
ble 10). Interestingly, however, better retrieval per-
formance did not always correspond with smaller
reductions in summarization performance. E.g. on
WCEP-10, the sparse retriever performed slightly
better, but the reduction in summarization perfor-
mance was considerably larger. On MSˆ2 and
Cochrane, the better-performing dense retriever
led to a larger reduction in summarization perfor-
mance. This suggests that the two types of retriev-
ers are making characteristically different errors12

that P/R@K do not completely capture. Future
work should consider summarization performance

12Previously noted by MacAvaney et al. (2022)



Table 4: Human evaluation on Multi-News. A bino-
mial test on three human annotators for n = 50 random
test examples was conducted for each facet (exclud-
ing ties). All results statistically significant (p < 0.01).
Inter-annotator agreement reported as Fleiss’ Kappa (κ).

Facet
baseline
preferred

open-domain
preferred

p κ

Coverage 60 23 5.97e-05 0.32
Informativeness 69 27 2.15e-05 0.47

itself, alongside IR metrics like P/R@K, when tun-
ing retrieval pipelines for open-domain MDS.

The number of documents to retrieve matters
We observe clear differences in the strategy for
choosing k, the number of retrieved documents
to summarize. Unsurprisingly, the oracle strategy
almost always leads to the smallest reduction in
summarization performance. This strategy closely
mimics the setting of retaining all documents with
a relevance score (assigned by the retriever) over a
certain threshold but assumes a strong retriever and
a well-calibrated threshold, both of which may be
difficult to achieve in practice. Our results suggest
that setting k as the mean number of relevant doc-
uments (if an accurate estimate can be made) is a
second-best strategy. We note that, relative to max
k, mean k tends to select for precision over recall
(see P@K vs. R@K scores in Table 1 & Table 10);
future work should consider tuning k for precision.

Human evaluation confirms degradation of sum-
marization performance Automatic evaluation
metrics like ROUGE are imperfect and may not
correlate with aspects of human judgment.13 There-
fore, we conducted a human evaluation to validate
our results. In short, human annotators have a sta-
tistically significant preference for summaries pro-
duced by the “baseline” model (no retrieval) along
two facets, coverage and informativeness (Table 4),
corroborating the degradation of summarization
performance in the open-domain setting as quanti-
fied by the automatic metrics. See Appendix H for
full details, including a manual analysis of example
summaries produced in the open-domain setting.

In-Context Learning with LLMs In-context
learning (ICL) with large language models (LLMs)
has emerged as a viable approach to zero-shot sum-
marization (Goyal et al., 2022). We conducted
preliminary experiments using this approach to de-
termine how its behaviour in the open-domain set-

13See §8 for an extended discussion

 Prompt Template

Natural language instructions
You are an expert journalist. Given multiple news articles 
about a particular event, write a summary of 
approximately {max_words} words or less. Respond in 
"journalese". Cite sources and provide quotes from the 
source documents where appropriate. Do not refuse to 
answer. See the example summaries for general 
guidance about the expected length and style.

In-context examples (up to 5)
Example summaries

{examples}

Test input
Source documents

{documents}

Summary:

Figure 2: Prompt template for our in-context learning
(ICL) based approach. Each prompt includes natural
language instructions, example reference summaries as
in-context examples, and unseen source documents as
input. max_words is set per dataset, 384 for Multi-News
and 32 for WCEP-10. examples (2 for Multi-News and
5 for WCEP-10) are randomly selected from the train
set, and the same examples are used for every input.

ting compares to the fine-tuned models that were
the focus of our evaluation. We chose GPT-3.5-
turbo as the LLM and designed a suitable prompt
(tuned based on validation set performance) which
contains some natural language instructions and a
few example summaries (Figure 2). We omit exper-
iments on the MSˆ2 and Cochrane datasets, whose
source documents, even when truncated to the first
25, exceed GPT-3.5’s maximum input token length
of 4096 (see Table 6). We also omit experiments on
Multi-XScience, as a snapshot of arXiv is presum-
ably included in the model’s training set; therefore
we cannot control for possible train-test contami-
nation as the reference summaries are the related
work sections of arXiv papers. To fit within the
maximum token limit of the model, we use only ex-
ample summaries as the in-context examples (omit-
ting the source documents) and randomly choose
2 example summaries from the train-set for Multi-
News and 5 for WCEP-10. To make results as re-
producible as possible, we set the temperature=0
and used the 03/01/2023 GPT-3.5-turbo snapshot.
All other hyperparameters of the OpenAI API are
left at their defaults.14 Lastly, due to associated
costs in using the model, we restrict our experi-

14https://platform.openai.com/docs/
api-reference/completions

https://platform.openai.com/docs/api-reference/completions
https://platform.openai.com/docs/api-reference/completions
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Figure 3: Fine-tuning summarizers in the open-domain.
Additional training on retrieved documents can reduce
sensitivity to imperfect retrieval; often at the cost of
performance on ground-truth documents. Dashed grey
line represents no change in performance.

ments to the sparse retriever. Results are presented
in Table 1. The ICL-based approach significantly
underperforms the fine-tuned models (by at least
∼8 points) but outperforms PRIMERA zero-shot.
The general trends (and relative magnitude) of the
degradation in performance in the open domain are
comparable. We note that previous work has found
that human annotators often prefer GPT-generated
summaries over those generated by smaller, fine-
tuned models, even when automatic metrics like
ROUGE disagree. However, this observation is
restricted to the single-document setting (Goyal
et al., 2022). Future work is needed to determine if
LLMs exhibit different behaviour under the open-
domain MDS setting than their smaller, fine-tuned
pre-trained-language model (PLM) counterparts.

6 Training in the Open-domain Setting
A natural question is whether a summarizer’s ro-
bustness to document retrieval errors at test time
can be improved by exposing the model to similar
errors at train time. To explore this, we retrieve the
documents for all examples in the train set of each
dataset and fine-tune summarizers on these exam-
ples. We then evaluate them on both the retrieved
document set and the original (ground-truth) docu-
ment set (Figure 3, see Appendix F for details). We
find clear cases where summarization performance
in the open-domain benefits from the additional
training (e.g. Multi-News, Multi-XScience), but
that this benefit can come at the cost of performance
on the ground-truth documents (e.g. Multi-News,

addition

deletion replacement

duplication

sorting backtranslation

backtranslate

Figure 4: Graphical depiction of perturbations. Dashed
line indicates input documents. Uncoloured documents
are ground-truth, green have been added, red removed
and blue modified. Unique documents are lettered.

WCEP-10 and Cochrane), and is sometimes unsta-
ble (e.g. WCEP, Cochrane). We note again that our
retrieval setting is highly idealized (§4.4); nonethe-
less, our results suggest that existing summariz-
ers could be adapted to the open-domain setting if
query-annotated training examples and appropriate
document indices are constructed.

7 Simulating Document Retrieval Errors
In this section, we investigate what is driving the re-
duction in summarization performance in the open-
domain setting (§5). We begin by carefully cate-
gorizing the various retrieval errors that can occur.
E.g., we could erroneously retrieve documents irrel-
evant to the query. For each error type, we design
a corresponding “perturbation” that can be applied
to the inputs of existing MDS datasets before they
are fed to a summarizer. The perturbations are de-
scribed below and depicted graphically in Figure 4:

• Addition: Add one or more irrelevant documents.
This could occur if we retrieve all relevant docu-
ments but also retrieve irrelevant ones.

• Deletion: Remove one or more documents. This
could occur if we retrieve only a fraction of all
relevant documents.

• Replacement: Replace one or more relevant
documents with irrelevant ones. This could occur
if we retrieve the correct number of documents
but substitute relevant ones for irrelevant ones.

• Duplication: Duplicate one or more documents.
This could occur if duplicate (or, more likely,
near-duplicate) documents exist in the index.15

15Deduplication is non-trivial (Lee et al., 2022) and near-



PRIMERA, Multi-News LED-Base, Cochrane

10
1

10
0

0

 R
O

U
G

E
-A

vg
 F

1
random oracle

addition duplication deletion replacement backtranslation

0-2
0

20
-40

40
-60

60
-80

80
-10

0

% of input documents perturbed

10
1

10
0

0

 B
E

R
TS

co
re

 F
1

10
1

10
0

0

 R
O

U
G

E
-A

vg
 F

1

random oracle

addition duplication deletion replacement backtranslation

0-2
0

20
-40

40
-60

60
-80

80
-10

0

% of input documents perturbed

10
1

10
0

0

 B
E

R
TS

co
re

 F
1

Figure 5: Results of the perturbation experiments on Multi-News (left) and Cochrane (right). Mean change in
summarization performance plotted against the percent of perturbed input documents. Values above -0.49 ROUGE
are shaded in green, and values below in red, the average difference in summarization performance reported in *CL
conferences. Y-axis is displayed in symlog scale. 68% confidence intervals (CI) are plotted as error bands.

• Sorting: Modify order of documents. Input doc-
uments for MDS are typically unordered. How-
ever, many methods concatenate documents be-
fore providing them as input, and it is unknown
if models are sensitive to this order. Different or-
derings could occur, e.g., if documents are sorted
by order of relevance before concatenating.

Token-level perturbation It is well known that
NLP models are sensitive to minor token-level
changes in their inputs (Prabhakaran et al., 2019;
Niu et al., 2020; Ribeiro et al., 2020; Moradi
and Samwald, 2021). To compare and contrast
the document-level sensitivity we investigate with
this known sensitivity, we include a token-level
perturbation, backtranslation, as control. Here,
we translate one or more input documents to an-
other high-resource language and back again. This
causes small changes, e.g. paraphrasing and syn-
onym substitution, allowing us to create semantics-
preserving, token-level changes to a document.16

7.1 Selecting Documents to Perturb
Each perturbation requires selecting one or more
documents to perturb, e.g., in addition and deletion,
we need to choose which documents to add and
which to remove. We investigate two strategies:

• Random: Select documents to perturb randomly,
mimicking a (very) weak retriever.

duplicates are not uncommon in large document collections
like C4 (Dodge et al., 2021) or S2ORC (Lo et al., 2020)

16See Appendix G.1 for details

• Oracle: Select documents in a way that mimics
a strong retriever. E.g. in deletion, we remove
ground-truth documents in order of least-to-most
similar to the reference summary R,17 in addi-
tion, we add irrelevant documents in order of
most-to-least similar.18

For perturbations that require selecting irrelevant
documents (addition & replacement), we select
from the set of all documents in the train, valida-
tion, and test splits (excluding documents from the
example we are perturbing). We evaluate summa-
rizers under increasing amounts of perturbation:
from 0% of documents perturbed up to 100%.

7.2 Results of Simulation Experiments
In Figure 5, we display the results of our exper-
iments simulating document retrieval errors for
two model-dataset pairs.19 To better contextual-
ize results, we shade differences in ROUGE ≥ 0.5
(average difference in summarization performance
reported in *CL conferences, Deutsch et al., 2022)
in red and the rest in green. This serves as a rough
yardstick to help identify large drops in perfor-
mance. We symlog (Webber, 2012) the y-axis to
make small changes in performance more apparent.
In general, results are congruent with our open-
domain MDS experiments (§5): (1) large reduc-

17Similar to §5, this leverages R as a pseudo-query
18Determined using Sentence Transformers (Reimers and

Gurevych, 2019); specifically all-MiniLM-L6-v2
19These are exemplary of main trends observed across all

model-dataset pairs; see Appendix G for complete results

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


tions in summarization performance are observed
even in cases of few simulated errors (< 20%) and
(2) strong summarizers (Figure 5, left) are more
sensitive to retrieval errors than weak summarizers
(Figure 5, right). Below, we discuss major trends.

Summarizers insensitive to duplicates and small
token-level changes A consistent trend across
models & datasets was an insensitivity to duplicate
documents, even in the extreme case of >80% dupli-
cation, suggesting that deduplication efforts on the
document index are unlikely to translate to improve-
ments in summarization performance. However,
this assumes duplicate documents are included
without replacing relevant documents, which is pos-
sible if k is based on a relevance threshold cutoff.
Another trend is that models are not overly sensi-
tive to minor token-level changes (exemplified by
backtranslation) relative to other perturbations, fur-
ther motivating our focus on document-level errors.

Erroneous additions vs. erroneous deletions In
the random setting, small amounts of deletion led
to large drops in summarization performance. Con-
versely, deletion has surprisingly little impact in
the oracle setting until most documents (>60%)
are removed. These results have two non-mutually
exclusive explanations: (1) summarizers only con-
sider a select few input documents, (2) reference
summaries have low coverage of the input docu-
ments, both corroborated by recent work (Wolhan-
dler et al., 2022). Based on the addition pertur-
bation results in the oracle setting, summarizers
appear to be more sensitive to erroneous additions
than deletions, which, alongside our top-k strat-
egy results in §5, suggests that retrieval pipelines
should be tuned for precision in open-domain MDS.

Summarizers are insensitive to document order
As far as we know, prior work has yet to investigate
whether multi-document summarizers are sensitive
to input document order. Although the documents
are generally considered unordered, they are usu-
ally concatenated before providing them as input.
To determine if summarizers are sensitive to this or-
der, we sorted the input documents of each dataset
before concatenation and re-evaluated the summa-
rizers. We investigate two sorting strategies:

• Random: Shuffle documents randomly.

• Oracle: Sort documents by similarity to the ref-
erence summary, R. This is motivated from two
perspectives: (1) prior work has found that trans-

formers are biased toward earlier tokens in their
input (Hofstätter et al., 2021), so we might ex-
pect improved performance by placing the most
similar content to R first, (2) a strong retriever
would assign a higher rank to the most relevant
documents, and we might choose to input docu-
ments to our summarizer in this order.

We find no significant difference (paired t-test, p
= 0.01) in summarization performance for any
model-dataset pair, except for WCEP-10 (see Ap-
pendix G.2). Here we find that both models we
evaluate (PRIMERA & LSG-BART) are negatively
affected by random sorting. One possible explana-
tion is that, due to how WCEP-10 was constructed,
the documents are (partially) sorted in order of rel-
evance (see Appendix A). Models trained on this
dataset may have learned to exploit this, e.g., by as-
signing more weight to earlier documents in the in-
put. After randomly shuffling input documents, this
learned heuristic would no longer hold, and sum-
marization performance might drop accordingly.

8 Conclusion
We present a new, open-domain task definition for
MDS. This reformulation is more challenging and
potentially more useful, enabling users to specify
their intent with only a query. Via extensive au-
tomatic and manual evaluation, we find that: (1)
summarization performance significantly degrades
in the open-domain setting, even when retrieval
performance is high, (2) additional training can
reduce this sensitivity to imperfect retrieval, and
(3) summarizers are insensitive to the retrieval of
duplicate documents and the order of retrieved doc-
uments but highly sensitive to other errors, like the
retrieval of irrelevant documents. Based on our
results, we provide practical guidelines, e.g. that
retrieval pipelines for open-domain MDS should
be tuned for precision. Curating high-quality MDS
datasets annotated with queries will be necessary to
enable further progress in the open-domain setting.

Limitations

Automated evaluation metrics may not corre-
late with human judgment Though established
metrics such as ROUGE and BERTScore are im-
perfect (Deutsch et al., 2022), they are frequently
used in the summarization literature, do correlate
with aspects of summary quality, and are useful for
comparing system-level performance, especially in
scenarios such as ours where performance differ-



ences can be several points below the baseline. To
validate our findings, we also conduct a human eval-
uation to better understand qualitative differences
in summaries generated in the open-domain setting
(see Appendix H). The investigation of better au-
tomated metrics for natural language generation is
an active field of research, and we hope to integrate
novel and performant metrics in future work.

Results conflate dataset features and model per-
formance Our evaluation conflates several is-
sues beyond the relative performance of retriev-
ers and summarizers. Dataset quality, the “multi-
document-ness” of each dataset, and the shortcom-
ings of automatic metrics all contribute to noise in
our results. For example, a dataset whose reference
summaries have low coverage of the input docu-
ments (as characterized by Wolhandler et al., 2022)
would not be expected to respond to retrieval errors
in the same way as a dataset where this coverage
is high. By experimenting with multiple datasets,
retrievers, and summarizers, as well as in the syn-
thetic perturbation setting (§7), we expect our re-
sults to be more resilient to these confounders.

Specialized retrievers may lead to better perfor-
mance We experiment with standard sparse and
dense retrievers in the zero-shot setting. More ef-
fort tuning retrieval pipelines, e.g. by introducing
re-rankers (Pradeep et al., 2021) or by fine-tuning
retrievers directly on MDS datasets, may improve
retrieval performance and lead to smaller summa-
rization performance reductions. Additionally, bet-
ter summarization performance might be achieved
by retrieving content at the span-level, (as opposed
to full documents). We leave the development of
retrieval pipelines purpose-built and tuned for open-
domain MDS to future work.
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A Dataset Details

All datasets were managed in the HuggingFace
Datasets library (Lhoest et al., 2021). The exam-
ples of each dataset consist of an input document
set, D and a human-written reference summary, S.
Multi-XScience and MSˆ2 each have an additional
input that is always provided (and never retrieved
or perturbed), the target articles abstract and the
target reviews background section. See Table 6
for dataset statistics. Below, we provide detailed
descriptions of each dataset:

• Multi-News (Fabbri et al., 2019): Consists of
news articles and summaries collected from
www.newser.com. There are 44,972 examples
in the train set and 5622 examples in the test
set. Each example contains between 1 and 10
documents, with a mean of ∼2.7.

• WCEP-10: Consists of news articles and
summaries collected from the Wikipedia Cur-
rent Events Portal (WCEP20). WCEP-1021

sub-samples the top 10 most relevant doc-
uments from the original WCEP dataset
(Gholipour Ghalandari et al., 2020). There
are 8158 examples in the train set and 1022
examples in the test set. Each example con-
tains between 1 and 10 documents, with a
mean of ∼9.1.

• Multi-XScience (Lu et al., 2020): The target
summary of each example is the related works
section of a scientific article, and the input
documents are the abstracts of the articles this
section cites. Also included is the target ar-
ticle’s abstract. There are 30,369 examples
in the train set and 5093 examples in the test
set. Each example contains between 1 and 20
documents, with a mean of ∼4.1.

• MSˆ2 (DeYoung et al., 2021): The target sum-
mary is a few sentences from a biomedical sys-
temic review which summarize the main find-
ings. The input documents are the included
studies for that review. Also included is the
target reviews background section. There are
14,188 examples in the train set and 2021 ex-
amples in the validation set. Each example
contains between 1 and 401 documents, with
a mean of ∼23.2.

20https://en.wikipedia.org/wiki/Portal:
Current_events

21https://huggingface.co/datasets/ccdv/WCEP-10

Table 5: Evaluated multi-document summarizers and
the datasets for which a fine-tuned model is publicly
available (or was trained by us).

Model Fine-tuned on Max Input Len. Zero-shot?

LED MSˆ2, Cochrane 16384 ✗

PEGASUS Multi-News 1024 ✗

PRIMERA
Multi-News, WCEP-10,

Multi-XScience
4096 ✓

LSG-BART Multi-News, WCEP-10 4096 ✗

• Cochrane (Wallace et al., 2021): Similar to
MSˆ2, except a background statement is not
included as input. There are 3752 examples
in the train set and 470 examples in the vali-
dation set. Each example contains between 1
and 537 documents, with a mean of ∼10.9.

B Retrieval Details

Document retrieval and evaluation are conducted
in the PyTerrier library (Macdonald and Tonellotto,
2020). In Table 7, we present the retrieval perfor-
mance on the train, validation and test split for each
dataset, retriever, and top-k strategy. Below, we
provided detailed descriptions of all retrievers:

• BM25 (Robertson et al., 1994): Like other
sparse retrievers, BM25 represents queries
and documents as sparse vectors, where each
element of a vector corresponds to a term
in the vocabulary. BM25 is a widely used
weighting scheme that extends TF-IDF (Jones,
2004) to account for document length and
term-frequency saturation. We use BM25 via
PyTerrier with the default settings.

• Contriever (Izacard et al., 2022): Contriever
is an unsupervised dense retriever that uses
a bi-encoder architecture. Documents and
queries are encoded independently using the
same BERT model (Devlin et al., 2019), and
the final embedding is obtained by mean-
pooling over the hidden representations of the
model’s last layer. The relevance score be-
tween a query and a document is the dot prod-
uct of their embeddings. Specifically, we use
contriever-msmarco,22 which has been fine-
tuned on the MS MARCO dataset (Campos
et al., 2016). We use Contriever via the PyTer-
rier Sentence Transformers plugin (Soldaini,
2022) with the default settings.

22https://huggingface.co/facebook/
contriever-msmarco

www.newser.com
https://en.wikipedia.org/wiki/Portal:Current_events
https://en.wikipedia.org/wiki/Portal:Current_events
https://huggingface.co/datasets/ccdv/WCEP-10
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Table 6: Dataset statistics, counting whitespace tokens and punctuation. *Following (DeYoung et al., 2021), we take
the first 25 documents as input (full statistics in parentheses). †Multi-XScience and MSˆ2 each have inputs that are
always provided (and never retrieved), the target articles abstract and the target reviews background section.

Number of Documents Average Number of Tokens

Dataset Domain Max Mean Total Per document Per summary

Multi-News News Articles 10 2.7 154,544 788 267
WCEP-10 News Articles 10 9.1 92,560 494 33
Multi-XScience† Scientific Literature 20 4.1 165,546 153 125
MSˆ2*† Medical Studies 25 (401) 17 (23) 415,333 332 58
Cochrane* Medical Studies 25 (537) 9 (11) 51,208 266 69

Table 7: Retrieval performance. The precision and recall at k for each retriever and top-k strategy is reported. The
index for each dataset is the set of all documents in the train, validation and test sets; the reference summaries are
used as queries, except for MSˆ2, where we use the provided background section. The Cochrane test set is blind, so
we do not have access to the reference summaries to use as queries and therefore do not evaluate on the test set.

Train Validation Test

Dataset Retriever Retriever Type Top-k Strategy P@K R@K P@K R@K P@K R@K

Multi-News BM25 sparse max(10) 0.22 0.83 0.22 0.82 0.22 0.82
mean (3) 0.64 0.74 0.64 0.74 0.64 0.74

oracle 0.75 0.75 0.75 0.75 0.75 0.75
Contriever dense max 0.21 0.80 0.21 0.79 0.21 0.80

mean 0.59 0.69 0.59 0.69 0.59 0.70
oracle 0.69 0.69 0.69 0.69 0.69 0.69

WCEP-10 BM25 sparse max (10) 0.59 0.66 0.60 0.63 0.63 0.67
mean (9) 0.62 0.62 0.63 0.60 0.66 0.64

oracle 0.64 0.64 0.63 0.63 0.67 0.67
Contriever dense max 0.60 0.66 0.60 0.64 0.63 0.67

mean 0.62 0.63 0.63 0.60 0.66 0.63
oracle 0.65 0.65 0.63 0.63 0.66 0.66

Multi-XScience BM25 sparse max (20) 0.05 0.41 0.06 0.40 0.06 0.40
mean (4) 0.16 0.27 0.16 0.26 0.16 0.27

oracle 0.22 0.22 0.22 0.22 0.23 0.23
Contriever dense max 0.06 0.38 0.06 0.38 0.06 0.38

mean 0.16 0.24 0.16 0.24 0.16 0.24
oracle 0.20 0.20 0.20 0.20 0.21 0.21

MSˆ2 BM25 sparse max (25) 0.17 0.26 0.16 0.22 0.17 0.22
mean (17) 0.21 0.22 0.18 0.18 0.20 0.18

oracle 0.22 0.22 0.18 0.18 0.19 0.19
Contriever dense max 0.19 0.29 0.18 0.25 0.19 0.26

mean 0.23 0.24 0.21 0.21 0.23 0.21
oracle 0.24 0.24 0.21 0.21 0.22 0.22

Cochrane BM25 sparse max (25) 0.17 0.55 0.17 0.57 – –
mean (9) 0.30 0.42 0.31 0.44 – –

oracle 0.38 0.38 0.40 0.40 – –
Contriever dense max 0.20 0.63 0.20 0.64 – –

mean 0.34 0.48 0.35 0.49 – –
oracle 0.45 0.45 0.44 0.44 – –

C Model Details

All models are implemented in PyTorch (Paszke
et al., 2019), and pretrained weights are obtained
from the HuggingFace Transformers library (Wolf
et al., 2020). Models were trained and evaluated
on 1-4 NVIDIA A100 40GB GPUs. We list details
about the models in Table 5. Below, we provide
detailed descriptions of all models:

• LED (Beltagy et al., 2020): LED replaces full

self-attention with local windowed attention
and global attention mechanisms that scale
linearly with input sequence length, allow-
ing for efficient processing of inputs up to
16K tokens. Its parameters are initialized with
the pretrained parameters of BART (Lewis
et al., 2020a), its positional embeddings with
16 copies of BART’s 1K position embeddings.
The model is fine-tuned on MDS datasets in a
supervised fashion.



Table 8: Reported versus reproduced ROUGE-1/2/L scores for each model-dataset pair evaluated in the main paper.
We also report zero-shot performance on select datasets for PRIMERA. *Fine-tuned by us.

Reported Reproduced

Dataset
Model

PRIMERA PEGASUS LED-base LSG-BART-base PRIMERA PEGASUS LED-base LSG-BART-base

Multi-News 49.9/21.1/25.9 47.5/18.7/24.9 – 47.1/18.9/25.2 49.3/20.3/25.4 48.2/20.1/25.4 – 46.3/18.8/25.1
↪→ zero-shot 42.0/13.6/20.8 – – – 39.7/11.9/19.2 – – –
WCEP 46.1/25.2/37.9 – – 46.0/24.2/37.4 45.1/24.7/36.7 – – 45.9/24.1/37.2
↪→ zero-shot 28.0/10.3/20.9 – – – 31.3/10.7/22.2 – – –
Multi-XScience 31.9/7.4/18.0 – – – 31.7/6.1/17.1 – – –
↪→ zero-shot 29.1/4.6/15.7 – – – 27.0/3.9/14.6 – – –
MSˆ2* – – 26.4/8.0/19.6 – – – 28.5/9.5/20.9 –
Cochrane* – – 23.9/6.6/17.6 – – – 26.9/6.9/18.4 –

Table 9: Results of the open-domain MDS experiments. We observe the following: (1) retrieval performance ranges
from high (Multi-News, WCEP-10, dark blue) to low (Multi-XScience, MSˆ2, Cochrane), (2) when summarizers
trained on these datasets are provided retrieved documents, they suffer from significant drops in performance (dark
red); more severe performance drops were observed in cases where baseline summarization performance was
relatively high (dark green). Experiments here used a sparse retriever (BM25); similar results were observed using
a dense retriever (Contriever, see Table 10). Statistically significant results are underlined (paired t-test, p = 0.01).

Retrieval Summarization

Dataset Model Top-k Strategy P@K R@K ROUGE-Avg F1 ∆ ROUGE-Avg F1 BERTScore F1 ∆ BERTScore F1

Multi-News PRIMERA max (10) 0.22 0.82 31.66 -7.39 31.78 -10.33
mean (3) 0.64 0.74 – -2.82 – -4.08

oracle 0.75 0.75 – -1.61 – -2.36
PEGASUS max – – 31.23 -8.49 29.88 -10.87

mean – – – -2.08 – -2.93
oracle – – – -1.15 – -1.50

LSG-BART-base max – – 30.05 -6.44 26.57 -8.17
mean – – – -1.77 – -2.35
oracle – – – -0.80 – -0.99

GPT-3.5-turbo max – – 23.86 -2.46 21.68 -3.92
mean – – – -1.59 – -2.76
oracle – – – -0.47 – -1.03

WCEP-10 PRIMERA max (10) 0.63 0.67 35.50 -1.02 48.26 -0.76
mean (9) 0.66 0.64 – -0.90 – -0.68

oracle 0.67 0.67 – -0.53 – -0.32
LSG-BART-base max – – 35.76 -1.15 48.17 -0.85

mean – – – -1.19 – -0.84
oracle – – – -0.88 – -0.54

GPT-3.5-turbo max – – 26.36 -0.22 32.72 -0.25
mean – – – -0.06 – -0.33
oracle – – – +0.10 – +0.11

Multi-XScience PRIMERA max (20) 0.06 0.40 18.31 -0.57 10.57 -1.82
mean (4) 0.16 0.27 – -0.25 – -1.27

oracle 0.23 0.23 – -0.06 – -0.97
MSˆ2 LED-base max (25) 0.16 0.22 19.66 -0.14 22.74 -0.47

mean (17) 0.18 0.18 – -0.10 – -0.13
oracle 0.18 0.18 – -0.01 – -0.21

Cochrane LED-base max (25) 0.17 0.57 17.39 -0.28 23.12 -2.11
mean (9) 0.31 0.44 – +0.34 – -0.32

oracle 0.40 0.40 – +0.10 – +0.00

• PEGASUS (Zhang et al., 2020a): PEGASUS
is pretrained using a novel Gap Sentences
Generation (GSG) objective, where whole sen-
tences from each document are masked, and
concatenated to form a pseudo-summary. The
model is then fine-tuned on MDS datasets in
a supervised fashion.

• PRIMERA (Xiao et al., 2022): Extends the
GSG objective with a novel masking strategy
explicitly designed for multi-document inputs
and pre-trains on a corpus of multi-document
examples. The model is then fine-tuned on

MDS datasets in a supervised fashion or used
in a zero-shot setting.

• LSG-BART (Condevaux and Harispe, 2022):
Like LED, LSG-BART replaces full self-
attention with a sparsified version, dubbed
Local-Sparse-Global (LSG) attention, to al-
low for efficient processing of long inputs. It
is initialized with the pretrained parameters of
BART and fine-tuned on MDS datasets in a
supervised fashion.



Table 10: Results of the open-domain MDS experiments using a dense retriever (Contriever). Difference between a
summarizers performance on the ground-truth input documents and performance when the documents were retrieved
is shown. Statistically significant results are underlined (paired t-test, p = 0.01).

Retrieval Summarization

Dataset Model Top-k Strategy P@K R@K ROUGE-Avg F1 ∆ ROUGE-Avg F1 BERTScore F1 ∆ BERTScore F1

Multi-News PRIMERA max (10) 0.21 0.80 31.66 -7.77 31.78 -10.47
mean (3) 0.59 0.70 – -3.31 – -4.60

oracle 0.69 0.69 – -2.20 – -3.07
PEGASUS max – – 31.23 -8.69 29.88 -10.88

mean – – – -2.65 – -3.45
oracle – – – -1.76 – -2.28

LSG-BART-base max – – 30.05 -6.70 26.57 -8.15
mean – – – -2.26 – -2.69
oracle – – – -1.41 – -1.54

WCEP-10 PRIMERA max (10) 0.63 0.67 35.50 +0.10 48.26 +0.90
mean (9) 0.66 0.63 – -0.14 – +0.68

oracle 0.66 0.66 – +0.29 – +0.86
LSG-BART-base max – – 35.76 -0.56 48.17 +0.26

mean – – – -0.96 – +0.10
oracle – – – -0.15 – +0.66

Multi-XScience† PRIMERA max (20) 0.06 0.38 18.31 -0.45 10.57 -0.96
mean (4) 0.16 0.24 – -0.81 – -0.96

oracle 0.21 0.21 – -0.28 – -0.37
MSˆ2 LED-base max (25) 0.18 0.25 19.66 -0.43 22.74 -0.70

mean (17) 0.21 0.21 – -0.37 – -0.64
oracle 0.21 0.21 – -0.32 – -0.38

Cochrane LED-base max (25) 0.20 0.64 17.39 -0.94 23.12 -2.77
mean (9) 0.35 0.49 – -0.37 – -0.93

oracle 0.44 0.44 – +0.25 – +0.71

C.1 Reproducing Reported Scores

Before experimentation, we attempt to reproduce
the reported scores of each MDS model. The re-
sults are provided in Table 8. In general, we can
reproduce the reported ROUGE scores (and some-
times even improve upon them); however, in a few
cases, there are differences as large as ∼3 ROUGE,
with the largest differences being observed for
PRIMERA, particularly in the zero-shot setting.

D Evaluation Details

The evaluation metrics, ROUGE and BERTScore,
were called from the HuggingFace Evaluate
library23. Before metrics are calculated, all text
is lightly pre-processed by removing leading and
trailing whitespace, newline characters and tabs.
For ROUGE, we use the default settings besides
use_stemmer=True.24 BERTScore has many
parameters which affect the final score; for repro-
ducibility, a hashcode is produced. Our hashcode
is: microsoft/deberta-xlarge-mnli_L40_
no-idf_version=0.3.11(hug_trans=4.22.0.
dev0)-rescaled_fast-tokenize

23https://github.com/huggingface/evaluate
24https://huggingface.co/spaces/

evaluate-metric/rouge

E Extended Results from: section 5

In §5, we presented the results from our open-
domain MDS experiments for the sparse retriever
(BM25) and max top-k strategy only. In Table 9 we
present the complete set of results for the sparse
retriever. The dense retriever (Contriever) results
were comparable and exhibited the same general
trends; they are presented in Table 10.

E.1 Summarization Baselines
In Table 3, we present scores of heuristic baselines.
Detailed descriptions of each baseline follow:

• Random (length-matched) summary: For
each example, take the summary to be the
reference summary of another example from
the same dataset that is the same (or similar)
length as the examples reference summary.
This provides us with coherent (but likely ir-
relevant) summaries of approximately the cor-
rect length from the same domain.

• All lead: For each example, take the sum-
mary to be the concatenation of the first sen-
tence from each input document. This is moti-
vated by the notion of a lead bias, namely that
in many summarization datasets (particularly
those comprised of news articles), sentences
at the beginning of a document are more likely

https://github.com/huggingface/evaluate
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
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Figure 6: Absolute error counts for different retrieval systems (sparse and dense) and top-k selection strategies (max,
mean, oracle). For each example in a given dataset, a retrieved document that does not exist in the ground-truth
input document set is counted as an addition and a ground-truth document that was not retrieved as a deletion.
Instances of one addition and one deletion are counted as a replacement.

to contain information that appears in the ref-
erence summary (Nenkova et al., 2011; Hong
and Nenkova, 2014; Xing et al., 2021).

• Oracle document: For each example, take
the summary to be the input document with
the highest ROUGE-1 F1 score with that ex-
ample’s reference summary. This provides
us with relevant (but likely incomplete) sum-
maries with high token overlap. A high score
may indicate that a dataset is less “multi”
(Wolhandler et al., 2022).

• Oracle lead: The first sentence of the oracle
document (see above). For MSˆ2 & Cochrane,
this is the title of the oracle document.

• Background/abstract: Applies only to MSˆ2
and Multi-XScience. For each example, take
the summary to be the additional input from
MSˆ2 (target reviews background section) and
Multi-XScience (target articles abstract).

E.2 Document Retrieval Error Analysis

In Figure 6, we tally the total number of errors
made by the sparse (BM25) and dense (Contriever)
retrievers on each dataset. For each example, we
count an addition (i.e. erroneous inclusion) each
time a document not in the ground-truth input doc-
ument set is retrieved, a deletion (i.e. erroneous
exclusion) each time a ground-truth document is
not retrieved and a replacement (i.e. an erroneous
swap of a relevant document for an irrelevant one)

each time both one addition and one deletion occur.
In general, the sparse and dense retrievers make a
highly comparable number of errors of each type.
Unsurprisingly, the oracle top-k strategy tends to
produce the lowest number of errors in total (pri-
marily replacements), followed by mean (a mix of
all error types) and max (primarily additions).

F Training in the Open-domain Setting

In §6, we presented the results of our experi-
ments fine-tuning summarizers in the open-domain
setting. We fine-tuned and evaluated the best-
performing model from each dataset: PRIMERA
for Multi-News and Multi-XScience, LSG-BART-
Base for WCEP-10 and LED-Base for MSˆ2 and
Cochrane. Each model was fine-tuned for an ad-
ditional three epochs (we found additional epochs
made little difference) using the original training
hyperparameters. All models were fine-tuned with
the AdamW optimizer (Loshchilov and Hutter,
2019) in PyTorch via the HuggingFace Transform-
ers library. The learning rate was linearly increased
for the first 10% of training steps and linearly de-
cayed to zero afterward. Documents were retrieved
using the dense retriever (contriever) and the mean
top-k strategy.

G Extended Results from: section 7

In §7, we presented results from our experiments
simulating document retrieval errors for two model-
dataset pairs that exemplified the main trends in the



Figure 7: Graphical depiction of the backtranslation perturbation. A truncated document from the Multi-News
(Fabbri et al., 2019) dataset is shown, and changes after backtranslation are highlighted.

Table 11: Results of the sorting perturbation experiments. Difference between a summarizers performance on
the ground-truth input documents and performance when the documents were perturbed is shown. Statistically
significant results are underlined (paired t-test, p = 0.01).

∆ ROUGE-Avg F1 ∆ BERTScore F1

Dataset Model ROUGE-Avg F1 BERTScore F1 Random Oracle Random Oracle

Multi-News PRIMERA 31.66 31.78 +0.06 +0.00 +0.02 +0.02
PEGASUS 31.23 29.88 -0.05 +0.04 -0.05 +0.16

WCEP-10 PRIMERA 35.50 48.26 -0.86 +0.11 -0.55 +0.57
LSG-BART-base 35.76 48.17 -0.98 -0.18 -0.62 +0.38

Multi-XScience PRIMERA 18.31 10.57 +0.07 -0.04 +0.13 -0.03
MS2 LED-base 19.66 22.74 +0.09 +0.24 +0.00 -0.01
Cochrane LED-base 17.39 23.12 -0.41 -0.32 -0.42 +0.06

rest of the results. We present complete results for
all model-dataset pairs in figures 8-15.

G.1 Backtranslation

In the main paper, we use backtranslation to create
token-level perturbations. The procedure involves
selecting one or more documents from the input set
and translating them to another language and back
again, often creating small, token-level changes
like paraphrasing and synonym substitution (this
is sometimes called “round-trip translation”, or
RTT). We choose to translate documents to and
from Danish, as there exists freely available and
high-performing EN→DA and DA→EN machine
translation (MT) models. In particular, we use the
models provided by the Language Technology Re-
search Group at the University of Helsinki (Tiede-
mann and Thottingal, 2020). We implement back-
translation using the nlpaug library (Ma, 2019). In
Figure 7, we provide an example of a backtrans-
lated document demonstrating synonym substitu-
tion (e.g. “highly”→“very”), paraphrasing (e.g.
“said the surviving ones”→“said that the survivors”)
and grammatical errors (e.g. “14 critically endan-
gered black rhinoceros has died”).

G.2 Sorting Perturbation Results

In Table 11, we present the tabulated results from
the sorting perturbation experiments (see §7 for
more details on the experimental procedure and
§7.2 for an analysis of the results).

H Human Evaluation

To make a human evaluation feasible, we chose a
single model-dataset pair with high summarization
and retrieval performance: PRIMERA and Multi-
News.25 To conduct the evaluation, we randomly
sampled 50 examples from the test set and pre-
sented three human annotators26 with the generated
summaries for these examples from the “baseline”
model (no retrieval) and the open-domain model
(with retrieval). Annotators were presented the
model summaries in randomized order as “model
summary A” and “model summary B” and in-
structed to select which summary (“A”, “B” or
“Neither”) they preferred for each of two facets,

25We take the results from the highest performing retriever
(sparse) and non-oracle top-k strategy (mean)

26The three annotators are a subset of the authors who did
not interact with model outputs prior to annotation



Table 12: Examples of degradation of summarization performance in the open-domain setting. Shown is the output
of the summarizer in the open-domain setting (truncated) and human annotator comments (paraphrased). The
plausible reason for degradation is based on a manual analysis of summarizer inputs and outputs.

Open-domain model summary Annotator comments Plausible reason for degradation

For the second year in a row, the
Academy of Motion Picture Arts and
Sciences did not nominate any black
actors to any of the 20 slots in the
four acting categories [. . . ] The Hol-
lywood Reporter calls it a “whiteout,”
and the president of the African Ameri-
can Film Critics Association says [. . . ]
There needs to be changes across the
board. [. . . ] The Academy, which is
94% white and 77% male, has been try-
ing to diversify its membership [. . . ]

The reference summary indicates that
meaningful progress is being made in
improving diversity amongst members
of the Academy of Motion Picture Arts
and Sciences. The baseline model
gets this correct, but the framing of the
open-domain model summary is that
little to no progress has been made.

The gold document set contains 2
documents, each about efforts to im-
prove diversity among members of the
Academy of Motion Picture Arts and
Sciences, both written after the 2016
Oscars. The retrieved document set
contains 3 documents, 1 from the gold
document set, and 2 written before the
2016 Oscars, both criticizing the fact
that no black actors were nominated
for any acting category.

A GoFundMe campaign has raised
more than $400,000 for a man who lost
his wife in childbirth [. . . ] Christian
musician Nathan Johnson gave birth
to his first child [. . . ] [his wife] started
having complications later in the morn-
ing [. . . ] Johnson is surrounded by
friends and family who are helping him
deal with the loss of his wife [. . . ]

The reference summary is about a Go-
FundMe campaign created on behalf
of Dawn Wells (best known for play-
ing Mary Ann Summers on Gilligan’s
Island) who is experiencing financial
hardship. The baseline model gets this
correct, but the open-domain model’s
summary is about a completely differ-
ent GoFundMe campaign.

The gold document set contains 2 doc-
uments, both about a GoFundMe cam-
paign for Dawn Wells. The retrieved
document set contains 1 additional doc-
ument, the story of a entirely different
GoFundMe campaign about a musi-
cian who lost his wife due to compli-
cations during childbirth.

A British woman is “very lucky” to
be alive after falling from a cruise
ship [. . . ] The cruise line says in a
statement that the woman intentionally
jumped overboard [. . . ] “the ship and
charter company teams are providing
support to the family and all impacted
guests during this difficult time,” [. . . ]

The summary produced by the open-
domain model contains an insinua-
tion of possible suicide (i.e. that the
woman jumped intentionally) that is
not present in the reference summary
or baseline model summary.

The retrieved document set contains
one additional document compared to
the gold document set, about a differ-
ent woman who did intentionally jump
overboard while on a cruise.

Prime Minister David Cameron said
he will step down in two days in favor
of Theresa May [. . . ] who will become
Britain’s second female leader. [. . . ]
[S]he will have the task of leading a
divided country out of the EU [. . . ]
The winner will be announced Sept. 9
and will replace David Cameron [. . . ]

The reference summary indicates that
May and Andrea Leadsom are the final
two candidates for Prime Minister of
the UK, which is reflected in the base-
line model summary. The summary
produced by the open-domain model
claims both that May is the winner and
that the winner is yet to be announced.

The retrieved document set contains
one additional document compared to
the gold set, about the surprise with-
drawal of Leadsom from the race.

coverage and informativeness,27 relative to the pro-
vided, human-written target summary R:

• Coverage (Grusky et al., 2018): How many
semantic content units from the reference sum-
mary are covered by the model summary.

• Informativeness (Nenkova and Passonneau,
2004): How well does the model summary
capture the key ideas of the reference sum-
mary.

The results from a binomial test28 on the human
annotations, as well as inter-annotator agreement

27There are many facets for which a human evaluation of
summarization could be conducted; we choose coverage and
informativeness as rough proxies for recall and precision

28https://en.wikipedia.org/wiki/Binomial_test

(IAA), are presented in Table 4. Human annotators
have a statistically significant preference for the
baseline model along both facets, with fair inter-
annotator agreement (κ > 0.21, Landis and Koch,
1977), providing further evidence for the degrada-
tion of summarization performance in the open-
domain setting observed throughout this work. In
Table 12, we provide examples of summaries pro-
duced in the open-domain setting alongside (para-
phrased) human annotator comments noting issues
with the summary. Based on a manual analysis of
the inputs and outputs of the summarizer, we also
provide plausible reasons for this observed degra-
dation in summarization quality as it relates to the
retrieved versus gold document sets.

https://en.wikipedia.org/wiki/Binomial_test
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Figure 8: Results of the perturbation experiments on the
Multi-News test set using PRIMERA. Mean change in
summarization performance plotted against percent of
perturbed input documents. 68% confidence intervals
(CI) are plotted as error bands.
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Figure 9: Results of the perturbation experiments on the
Multi-News test set using PEGASUS. Mean change in
summarization performance plotted against percent of
perturbed input documents. 68% confidence intervals
(CI) are plotted as error bands.
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Figure 10: Results of the perturbation experiments on
the Multi-News test set using LSG-BART-base. Mean
change in summarization performance plotted against
percent of perturbed input documents. 68% confidence
intervals (CI) are plotted as error bands.
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Figure 11: Results of the perturbation experiments on
the WCEP-10 test set using PRIMERA. Mean change
in summarization performance plotted against percent
of perturbed input documents. 68% confidence intervals
(CI) are plotted as error bands.
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Figure 12: Results of the perturbation experiments on
the WCEP-10 test set using LSG-BART-base. Mean
change in summarization performance plotted against
percent of perturbed input documents. 68% confidence
intervals (CI) are plotted as error bands.
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Figure 13: Results of the perturbation experiments on
the Multi-XScience test set using PRIMERA. Mean
change in summarization performance plotted against
percent of perturbed input documents. 68% confidence
intervals (CI) are plotted as error bands.
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Figure 14: Results of the perturbation experiments on
the MSˆ2 validation set using LED-base. Mean change
in summarization performance plotted against percent
of perturbed input documents. 68% confidence intervals
(CI) are plotted as error bands.
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Figure 15: Results of the perturbation experiments on
the Cochrane validation set using LED-base. Mean
change in summarization performance plotted against
percent of perturbed input documents. 68% confidence
intervals (CI) are plotted as error bands.
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