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Abstract

The scientific claim verification task requires
an NLP system to label scientific documents
which SUPPORT or REFUTE an input claim,
and to select evidentiary sentences (or ratio-
nales) justifying each predicted label. In this
work, we present MULTIVERS, which predicts
a fact-checking label and identifies rationales in
a multitask fashion based on a shared encoding
of the claim and full document context. This ap-
proach accomplishes two key modeling goals.
First, it ensures that all relevant contextual in-
formation is incorporated into each labeling
decision. Second, it enables the model to learn
from instances annotated with a document-level
fact-checking label, but lacking sentence-level
rationales. This allows MULTIVERS to per-
form weakly-supervised domain adaptation by
training on scientific documents labeled using
high-precision heuristics. Our approach out-
performs two competitive baselines on three
scientific claim verification datasets, with par-
ticularly strong performance in zero / few-shot
domain adaptation experiments. Our code and
data are available at https://github.com/
dwadden/multivers.

1 Introduction

The proliferation of scientific mis- and dis-
information on the web has motivated the release
of a number of new datasets (Saakyan et al., 2021;
Sarrouti et al., 2021; Wadden et al., 2020; Kotonya
and Toni, 2020) and the development of modeling
approaches (Pradeep et al., 2021; Li et al., 2021;
Zhang et al., 2021) for the task of scientific claim
verification. The goal of the task is to verify a given
scientific claim by labeling scientific research ab-
stracts which SUPPORT or REFUTE the claim, and
to select evidentiary sentences (or rationales) re-
porting the findings which justify each label.

A common approach to this task is to first ex-
tract rationales from the larger document context,
and then make label predictions conditioned on the

Ibuprofen worsens COVID-19 symptoms

Covid-19 and avoiding Ibuprofen. 
…
a potential increased risk of COVID-19 
infection was feared with ibuprofen use
...
At this time, there is no supporting evidence 
to discourage the use of ibuprofen

Claim:

Label: REFUTES

Evidence abstract:

Figure 1: A claim from the HealthVer dataset, refuted
by a research abstract. The sentence in red is a rationale
reporting a finding that REFUTES the claim. However,
this finding cannot be interpreted properly without the
context in blue, which specifies that the finding applies
to Ibuprofen as a treatment for COVID. MULTIVERS
incorporates the full context of the evidence-containing
abstract when predicting fact-checking labels.

selected rationales. This “extract-then-label” ap-
proach has two important drawbacks, which we
aim to address in this work. First, the rationales
may lack information required to make a prediction
when taken out-of-context; for instance, they may
contain acronyms or unresolved coreferences, or
lack qualifiers that specify the scope of a reported
finding (Figure 1 provides an example). Second,
the “extract-then-label” approach requires training
data annotated with both sentence-level rationales
and abstract-level labels. While sentence-level ra-
tionale annotations are costly and require trained
experts, abstract-level labels can be created cheaply
using high-precision heuristics, e.g., the titles of
research papers sometimes make claims that are
supported by their abstracts.

Motivated by these challenges, we introduce
MULTIVERS (Multitask Verification for Science):
Given a claim and evidence-containing scientific
abstract, MULTIVERS creates a shared encoding of
the entire claim / abstract context, using the Long-
former encoder (Beltagy et al., 2020) to accommo-
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date long sequences. Then, it predicts an abstract-
level fact-checking label and sentence-level ratio-
nales in a multitask fashion, enforcing consistency
between the outputs of the two tasks during de-
coding. This modeling approach ensures that label
predictions are made based on all available con-
text, and enables training on instances derived via
weak supervision for which abstract-level labels
are available, but sentence-level rationales are not.

In experiments on three scientific claim verifi-
cation datasets, we find that MULTIVERS outper-
forms two state-of-the-art baselines, one of which
has more than 10x the parameters of our system.
In addition, we show that training MULTIVERS
on weakly-labeled in-domain data substantially im-
proves performance in the zero / few-shot domain
adaptation settings. The ability to achieve reason-
able performance given limited labeled data is es-
pecially valuable in specialized domains, due to the
high cost of collecting expert annotations.

In summary, our contributions are as follows:
1. We introduce MULTIVERS, a multitask sys-

tem for full-context scientific claim verification.
MULTIVERS improves fully-supervised fact-
verification performance by an average of 11%
on three datasets over two state-of-the-art base-
lines, with improvements of 14% and 26% in
the few-shot and zero-shot settings.

2. We present weak supervision heuristics to as-
sign fact-checking labels to two large scientific
datasets, and show that training on these an-
notations more than doubles zero-shot domain
adaptation performance.

3. Through ablations and analysis, we demonstrate
that our multitask modeling approach achieves
our goals of incorporating full-document con-
text into label predictions, and facilitating zero /
few-shot domain adaptation.

2 Background

2.1 The scientific claim verification task
We use the definition of scientific claim verification
from the SCIFACT task (Wadden et al., 2020), and
provide a brief overview of the task here. Other
works have cast scientific claim verification as a
sentence-level natural language inference (NLI)
task; in §4.1, we describe how we process these
datasets to be compatible with the task as consid-
ered in this work.

Task definition Given a claim c and a collec-
tion of candidate abstracts which may contain

evidence relevant to c, the scientific claim veri-
fication task requires a system to predict a label
y(c, a) ∈ {SUPPORTS, REFUTES, NEI1}, which
indicates the relationship between c and a for each
candidate a. For all abstracts labeled SUPPORTS

or REFUTES, the system must also identify ratio-
nales R(c, a) = {r1(c, a), . . . , rn(c, a)}, where
each ri(c, a) is a sentence from a that either entails
or contradicts the label y(c, a).2 The rationales may
not be self-contained, and may require additional
context from elsewhere in the abstract to resolve
coreferential expressions or acronyms, or to deter-
mine qualifiers specifying experimental context or
study population.3 Examples of these situations are
provided in Figure 1 and Appendix A.3.

Evaluation The SCIFACT task reports four evalu-
ation metrics. We have found that two of these met-
rics are sufficient to convey the important findings
for our experiments: (1) abstract-level label-only
evaluation computes the model’s F1 score in iden-
tifying abstracts that SUPPORT or REFUTE each
claim. Predicting the correct label y(c, a) is suf-
ficient; models do not need to provide rationales.
(2) Sentence-level selection+label evaluation com-
putes the point-wise product of the model’s F1
score in identifying the rationales R(c, a), with
the model’s abstract-level label y(c, a); this metric
rewards precision in identifying exactly which sen-
tences contain the evidence justifying the label. In
this work, we refer to these two metrics as “abstract”
and “sentence” evaluation respectively.

Retrieval settings For open scientific claim ver-
ification, the system must retrieve candidate ab-
stracts from a corpus of documents. In the abstract-
provided setting, candidate abstracts for each claim
are given as input. We describe the retrieval set-
tings for all datasets in §4.1.

Supervision settings We consider three supervi-
sion settings. In the zero-shot domain adaptation
setting, models may not train on any in-domain fact-
checking data, though they may train on general-
domain fact-checking data and other available sci-
entific datasets. In the few-shot domain adaptation
setting, models may train on 45 claims from the tar-
get dataset. In the fully-supervised setting, models

1NEI stands for “Not Enough Info”.
2This rationale definition is simplified slightly from the

one presented in Wadden et al. (2020).
3This convention is consistent with related tasks in ratio-

nalized NLP for biomedical literature, such as Lehman et al.
(2019) and DeYoung et al. (2020).
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may train on all claims from the target dataset.
While most existing work on scientific fact-

checking has focused on the fully-supervised set-
ting, some recent work has examined the zero-shot
setting. Lee et al. (2021) use language model per-
plexity as a measure of claim veracity. Wright
et al. (2022) generate claims based on citation sen-
tences, and verify each generated claim against the
abstracts mentioned in the claim’s source citation.
Given the high potential impact of fact verifica-
tion systems for specialized domains, combined
with the substantial cost of creating these datasets,
we believe that the development of techniques for
zero / few-shot domain adaptation represents an
important area for continued research.

2.2 Scientific claim verification datasets
Several scientific claim verification datasets have
been released in the past few years. COVIDFact
(Saakyan et al., 2021) and HealthVer (Sarrouti
et al., 2021) verify COVID-19 claims against sci-
entific literature. PUBHEALTH (Kotonya and Toni,
2020) verifies public health claims against news
and web sources. SCIFACT (Wadden et al., 2020)
verifies claims made in citations in scientific papers.
CLIMATE-FEVER (Diggelmann et al., 2020) veri-
fies claims about climate change against Wikipedia.
In this work, our focus is verifying claims against
scientific literature. We therefore perform experi-
ments on the COVIDFact, HealthVer, and SCIFACT

datasets. Preprocessing details and summary statis-
tics for these datasets are included in §4.1.

2.3 Models
Motivated in part by the SCIVER shared task (Wad-
den and Lo, 2021) and leaderboard, a number of
models have been developed for SCIFACT (the fo-
cus of the shared task). The two strongest systems
on the shared task were VERT5ERINI (Pradeep
et al., 2021) and PARAGRAPHJOINT (Li et al.,
2021), which we adopt as baselines. More recently,
ARSJOINT (Zhang et al., 2021) achieved perfor-
mance competitive with these two systems.4

Given a claim c and candidate abstract
a, these models make predictions in two
steps. First, they predict rationales R̂(c, a) =
{r̂1(c, a), . . . , r̂n(c, a)} likely to contain evidence.
Then, they make a label prediction ŷ(c, fR(R̂(c, a))
based on the claim and predicted rationales, where
fR is a function which creates a representation of
the predicted rationales.

4Recent progress can be found on the SciFact leaderboard.

While existing models share this general ap-
proach, they use different functions fR to construct
rationale representations. For VERT5ERINI, ratio-
nale selection and label prediction are performed by
two separate T5-3B models, and fR concatenates
the text of the selected rationales. As a result, the
label predictor may not have access to all context
needed to make a correct label prediction. PARA-
GRAPHJOINT and ARSJOINT attempt to address
this issue by encoding the claim and full abstract
(truncating to 512 tokens), and using these represen-
tations as the basis for both rationale selection and
label prediction. The function fR consists of self-
attention layers over the (globally-contextualized)
token representations of the predicted rationales.
Thus, PARAGRAPHJOINT and ARSJOINT can in-
corporate abstract-level context into label decisions.
However, the mechanism by which this occurs is
more complex than for our proposed system and
requires rationale supervision for all training in-
stances.

3 The MULTIVERS model

We propose the MULTIVERS model for full-
context claim verification. In §3.1, we describe our
modeling approach. Rather than predicting ratio-
nales R̂(c, a) followed by the overall fact-checking
label ŷ(c, fR(R̂(c, a))), we predict ŷ(c, a) directly
based on an encoding of the entire claim and ab-
stract, and enforce consistency of R̂(c, a) with
ŷ(c, a) during decoding. A similar idea has been
shown to be effective on sentiment analysis and
propaganda detection with token-level rationales
(Pruthi et al., 2020). In §3.2, we explain how our
approach facilitates few-shot domain adaptation
using weakly-labeled scientific documents.

3.1 Full-context claim verification
Long-document encoding Given a claim c and
candidate abstract a consisting of title t and sen-
tences s1, . . . , sn, we concatenate the inputs sepa-
rated by </s> tokens. The </s> token following
each sentence si is notated as </s>i :

<s> c </s> t </s> s1 </s>1 . . . sn </s>n

The model input sometimes exceeds the 512-token
limit common to transformer-based language mod-
els like BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019); see Table 1 for details on how
frequently this occurs. Therefore, we use the Long-
former model (Beltagy et al., 2020) as our encoder.
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We assign global attention to the <s> token, as
well as all tokens in c and all </s> tokens.

Multitask rationale selection and label predic-
tion Given the full-context Longformer encoding,
we predict whether sentence si is a rationale via a
binary classification head, consisting of two feed-
forward layers followed by a two-way softmax, on
top of the globally-contextualized token </s>i .

Similarly, we predict the overall fact-checking
label ŷ(c, a) by adding a three-way classification
head over the encoding of the <s> token. Since
the <s> token is trained with global attention, the
model makes predictions based on a representation
of the entire claim and abstract.

During training, we compute the cross-entropy
losses for the label and rationale predictions, and
train to minimize the multitask loss:

L = Llabel + λrationaleLrationale (1)

where λrationale is tuned on the dev set.
At inference time, we first predict ŷ(c, a) to be

the label with the highest softmax score. If the
predicted label is NEI, we predict no rationales.
If the predicted label is either SUPPORTS or RE-
FUTES, then we predict rationales as all sentences
with an assigned softmax score of greater than 0.5.
If no sentences have a rationale softmax over 0.5,
then we predict the highest-scoring sentence as the
sole rationale. In §6.2, we show that this ability to
condition the rationale predictions on the label pre-
diction (as opposed to conditioning the label on the
predicted rationales) leads to substantial improve-
ment in the zero-shot domain adaptation setting.

Candidate abstract retrieval For datasets that
require retrieval of candidate abstracts, we rely
on the VERT5ERINI (Pradeep et al., 2021) re-
trieval system, which achieved state-of-the-art per-
formance on the SCIVER shared task (SCIVER

used the SCIFACT dataset for evaluation). This
model first retrieves abstracts using BM25 (Robert-
son and Zaragoza, 2009), then refines the predic-
tions using a neural re-ranker based on Nogueira
et al. (2020), which is trained on the MS MARCO
passage dataset (Campos et al., 2016).

3.2 Training for domain adaptation
Three types of data are available to train scien-
tific claim verification systems. (1) In-domain
fact-checking annotations are the “gold standard”,
but they are expensive to create and require ex-
pert annotators. (2) General-domain fact-checking

datasets like FEVER (Thorne et al., 2018) are abun-
dantly available, but generalize poorly to scientific
claims (see §6.1). (3) Scientific documents – ei-
ther unlabeled or labeled for different tasks – are
abundant, and high precision heuristics (described
in §4.2) can be used to generate document-level
fact-checking labels y(c, a) for these data.

We train MULTIVERS as follows: we first pre-
train on a combination of general-domain fact-
checking annotations, combined with weakly-
labeled in-domain data.5 Then, we finetune on
the target scientific fact-checking dataset. The mul-
titask architecture of MULTIVERS is well-suited
to this strategy, since the model can be trained on
data with or without rationale annotations. When
no rationales are available, we set λrationale = 0 in
the loss function and train as usual. By contrast,
training an “extract-then-label” model on weakly-
supervised data requires creating rationale annota-
tions R(c, a), which is quite noisy (see §4.2).

4 Datasets
4.1 Scientific claim verification datasets
We experiment with three scientific claim verifi-
cation datasets. Table 1 provides a summary of
important dataset characteristics. Preprocessing
steps and additional statistics can be found in Ap-
pendix A. HealthVer and COVIDFact were orig-
inally released in an NLI format, pairing claims
with (out-of-context) evidentiary sentences. We
convert to our task format by identifying the ab-
stracts in the CORD-19 corpus (Wang et al., 2020)
containing these sentences.

We use the following terminology: an atomic
claim makes an assertion about a single property
of a single entity, while a complex claim may make
assertions about multiple properties or entities.

SCIFACT Claims in SCIFACT (Wadden et al.,
2020) were created by re-writing citation sentences
occurring in biomedical literature into atomic
claims, which were verified against the abstracts of
the cited documents. REFUTED claims were cre-
ated by manually negating the original claims. Ab-
stracts that were cited but which annotators judged
not to contain evidence were labeled NEI. SCI-
FACT requires retrieval of candidate abstracts.

HealthVer (Sarrouti et al., 2021) consists of
COVID-related claims obtained by extracting snip-
pets from articles retrieved to answer questions

5We use “pretraining” as shorthand for “training on the tar-
get task with out-of-domain and/or weakly-supervised labels.”
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Dataset Domain Claim source Open Has
NEI

Claim
complexity

Negation
method

Train
claims

Eval
claims

> 512
tokens

HealthVer COVID TREC-COVID ✗ ✓ Complex Natural 1,622 230 14.9%
COVIDFact COVID Reddit ✗ ✗ Complex Automatic 903 313 12.4%
SCIFACT Biomed Citations ✓ ✓ Atomic Human 1,109 300 27.4%

FEVER Wiki Wikipedia - ✓ Atomic Human 130,644 - 33.2%
PUBMEDQA Biomed Paper titles - ✓ Complex Automatic 58,370 - 12.1%
EVIDENCEINFERENCE Biomed ICO prompts - ✓ Atomic Automatic 7,395 - 42.7%

Table 1: Summary of datasets used in experiments. The top group of datasets are scientific claim verification
datasets, and the bottom group are for pretraining. Datasets with a ✓ for “Open” require that candidate abstracts be
retrieved from a corpus; those with a ✗ provide candidate abstracts as input. Datasets with a ✓ for “Has NEI” require
three-way (SUPPORTS / REFUTES / NEI) label prediction, while those with an ✗ are (SUPPORTS / REFUTES) only.
The “> 512 tokens” column indicates the percentage of claim / abstract contexts that exceed 512 tokens.

from TREC-COVID (Voorhees et al., 2020), ver-
ified against abstracts from the CORD-19 corpus
(Wang et al., 2020). Claims in HealthVer may be
complex. REFUTED claims occur naturally in the
article snippets. HealthVer provides candidate ab-
stracts for each claim, but some of these candidates
do not contain sufficient information to justify a
SUPPORTS / REFUTES verdict and are labeled NEI.

COVIDFact (Saakyan et al., 2021) collects
claims about COVID-19 scraped from a COVID-19
subreddit, and verifies them against linked scien-
tific papers, as well as documents retrieved via
Google search. Claims in COVIDFact may be
complex, and candidate abstracts for each claim
are provided. All candidates either SUPPORT or
REFUTE the claim. Claim negations were created
automatically by replacing salient words in the orig-
inal claims, and as a result the labels y(c, a) are
somewhat noisy (see Appendix A).

4.2 Pretraining datasets
We briefly describe our pretraining datasets and
the weak supervision heuristics used to construct
them. Detailed descriptions of these heuristics can
be found in Appendix A.1.

FEVER (Thorne et al., 2018) consists of claims
created by re-writing Wikipedia sentences into
atomic claims, verified against Wikipedia articles.

EVIDENCEINFERENCE (Lehman et al., 2019;
DeYoung et al., 2020) was released to facilitate un-
derstanding of clinical trial reports, which examine
the effect of an intervention on an outcome, rela-
tive to a comparator (“ICO” elements). The dataset
contains ICO prompts paired with (1) labels indi-
cating whether the outcome increased or decreased
due to the intervention, and (2) rationales justifying
each label. We use rule-based heuristics to convert

these prompts into claims – for instance “[interven-
tion] increases [outcome] relative to [comparator]”.

PUBMEDQA (Jin et al., 2019) was released to
facilitate question-answering over biomedical re-
search abstracts. We use the PQA-A subset, which
is a large collection of abstracts with “claim-like” ti-
tles – for instance, “Vitamin B6 supplementation in-
creases immune responses in critically ill patients.”
We treat the paper titles as claims and the matching
abstracts as the evidence sources.

To train models requiring rationale supervision,
we create weakly-supervised rationales by select-
ing the sentences with highest similarity to the
claim as measured by cosine similarity of Sentence-
BERT embeddings (Reimers and Gurevych, 2019).
These annotations are not used to train MUL-
TIVERS. To estimate the precision of our rationale
labeling heuristic, we predict rationales in the same
fashion for our supervised datasets and compute
the Precision@1 with which this method identi-
fies gold rationales. The scores are relatively low:
49.4, 48.8, and 43.4 for SCIFACT, COVIDFact, and
HealthVer respectively.

5 Experimental setup

We describe our model training procedure, the sys-
tems against we compare MULTIVERS, and our
ablation experiments.

5.1 Model training

Our complete training procedure consists of pre-
training on the three datasets from §4.2, followed
by finetuning on one of the target datasets from
§4.1. We conduct experiments with three different
levels of supervision. For zero-shot experiments,
we perform pretraining only. For few-shot exper-
iments, we pretrain followed by finetuning on 45
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target examples. For fully-supervised experiments,
we pretrain and then train on all target data.

Following Li et al. (2021), we found that nega-
tive sampling was important to achieve good pre-
cision on SCIFACT, which requires document re-
trieval. We train with 20 negative samples per claim
and retrieve 10 abstracts per claim at inference time.
Appendix C.3 shows results without negative sam-
pling. For the other datasets, no negative sampling
was used. Additional details including batch sizes,
learning rates, number of epochs, etc. can be found
in Appendix B.

During model development, we experimented
with training on all three target datasets combined
before predicting on each one, but found that this
did not improve performance; see Appendix C.4.

5.2 Baseline systems
We use PARAGRAPHJOINT and VERT5ERINI as
baselines. VERT5ERINI is the largest model,
with 5.6B parameters. MULTIVERS and PARA-
GRAPHJOINT are comparably-sized, with 440M
and 360M parameters, respectively.

In the fully-supervised setting, we compare
against both baselines. For prediction on SCIFACT,
we use publicly available model checkpoints as-
is. For training on HealthVer and COVIDFact,
we use the code provided by the authors, start-
ing from the available checkpoints trained on SCI-
FACT. Model hyperparameters (learning rate, batch
size, epoch number, etc.) for all systems including
MULTIVERS were tuned based solely on SCIFACT

and not adjusted further. Additional details can be
found in Appendix B.4.

Evaluation in the few-shot and zero-shot set-
tings requires pretraining and finetuning as de-
scribed in §5.1. Due to the expense of pretraining
T5-3B, we do not perform these experiments for
VERT5ERINI, and compare only against PARA-
GRAPHJOINT (which shows comparable perfor-
mance in the fully-supervised setting). We pretrain
PARAGRAPHJOINT on the data described in §4.2.

5.3 Ablations
Since PARAGRAPHJOINT and VERT5ERINI differ
from MULTIVERS along a number of important
dimensions (e.g. model architecture, number of pa-
rameters, and base encoder), we conduct ablations
to characterize the performance contributions of
three key components of MULTIVERS.

Pretraining data We compare the results of three
different pretraining strategies. For FEVERSCI, we

pretrain on all available data as described in §5.1.
For FEVER, we pretrain on FEVER only. For No-
Pretrain, we perform no pretraining.

Base encoder We compare the performance
achieved using LongFormer as the encoder for
MULTIVERS, compared to the results when we
swap in RoBERTa but keep other settings identical.
We use Longformer-large and RoBERTa-large.

Modeling approach We compare three model-
ing approaches: (1) The Multitask approach is the
method used by MULTIVERS as described in §3.1.
(2) The Pipeline approach consists of two separate
Longformer modules. The first selects rationales
as described in §3.1, but with Llabel removed from
Eq. 1, and the second module predicts a label given
the text of the rationales selected by the first mod-
ule as input. When pretraining on PUBMEDQA, we
train on the rationales chosen by Sentence-BERT
as described in §4.2. (3) The Multitask train /
Pipeline inference (MT / PI) approach takes the
model trained using the Multitask approach, and
performs inference using the Pipeline approach.
Specifically, MT / PI is trained to make label pre-
dictions based on full abstracts, but must make test-
time label predictions based on predicted rationales
only. By contrast, the Pipeline model makes label
predictions based on gold and predicted rationales
at train and test time, respectively.

6 Experimental results

We compare MULTIVERS performance relative to
our baseline systems, and present ablation results.

6.1 Main Results
Table 2 compares the performance of MULTIVERS
against PARAGRAPHJOINT and VERT5ERINI. A
few trends are apparent. First, MULTIVERS out-
performs the baselines on all datasets, with rel-
ative improvements — averaged over the three
datasets and two evaluation methods — of 26%,
14%, and 11% in the zero-shot, few-shot, and fully-
supervised settings respectively. We examine pos-
sible causes of this improvement in §6.2. Second,
while all models score within roughly six points
of each other on HealthVer and SCIFACT, variabil-
ity is much greater on COVIDFact. We suspect
that this is due to the automatically-generated na-
ture of COVIDFact negations. Third, we observe
that HealthVer appears to be the most challenging
dataset of the three. Few-shot abstract-level F1
scores for COVIDFact and SCIFACT are generally
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HealthVer COVIDFact SCIFACT
Abstract Sentence Abstract Sentence Abstract Sentence

Setting Model P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Zero PARAGRAPHJOINT 72.3 14.4 24.0 22.9 2.7 4.9 51.3 37.9 43.6 31.5 16.0 21.3 52.9 32.4 40.2 36.4 14.9 21.1

MULTIVERS 60.6 20.5 30.7 25.0 4.6 7.8 48.8 45.7 47.2 32.7 18.5 23.6 49.0 44.6 46.7 39.0 21.6 27.8

Few PARAGRAPHJOINT 62.7 41.6 50.0 46.0 29.3 35.8 73.3 60.6 66.3 44.3 30.6 36.2 44.4 51.4 47.6 33.0 35.1 34.0

MULTIVERS 63.6 47.9 54.7 41.9 31.0 35.7 71.3 68.1 69.7 39.5 35.4 37.4 76.4 54.1 63.3 51.7 40.3 45.3

Full
VERT5ERINI 71.3 74.0 72.6 65.6 61.2 63.3 76.6 52.7 62.4 44.8 27.2 33.9 64.0 73.0 68.2 60.6 66.5 63.4
PARAGRAPHJOINT 75.0 68.3 71.5 69.9 60.6 64.9 71.5 68.1 69.8 41.4 40.3 40.8 75.8 63.5 69.1 68.9 54.6 60.9

MULTIVERS 78.9 76.3 77.6 71.4 67.0 69.1 77.3 77.3 77.3 41.5 46.1 43.7 73.8 71.2 72.5 67.4 67.0 67.2

Table 2: Performance of MULTIVERS and baselines. In the fully-supervised setting, we compare to PARA-
GRAPHJOINT and VERT5ERINI, which exhibit comparable performance. In the zero and few-shot settings, we
compare to PARAGRAPHJOINT only due to the high cost of pretraining VERT5ERINI. We report performance using
abstract-level and sentence-level evaluation as defined in §2.1.

within 10 F1 of their fully-supervised values, while
the gap is roughly 20 F1 for HealthVer. This may
be due to the high complexity of HealthVer claims.

6.2 Ablations
The results of all ablations are shown in Table 3.
We report abstract and sentence-level F1 scores in
the main text; full results can be found in Table 9
in Appendix C.

In-domain pretraining substantially improves
zero / few-shot performance In Table 3a, we
compare the performance of models pretrained on
FEVERSCI, FEVER, and No-Pretrain. In the zero-
shot setting, removing scientific data during pre-
training results in a relative performance decrease
of 65%, averaged over the three datasets and two
evaluation methods. The decrease is driven primar-
ily by very low recall (see Table 9a).

In the few-shot setting, FEVER pretraining
scores within 4% of FEVERSCI, while No-Pretrain
results in a 39% decrease relative to FEVERSCI.
This suggests that training on a handful of target
examples is sufficient to recalibrate a model trained
for a different domain, but not to learn the task from
scratch. In the fully-supervised setting, FEVER

pretraining is only slightly worse than FEVERSCI,
while No-Pretrain lags by roughly 9%. Overall,
the results indicate that pretraining always helps,
and pretraining on weakly-labeled in-domain data
helps especially when target data are scarce.

Longformer improves performance on datasets
with long documents Table 3b compares the per-
formance of MULTIVERS when Longformer and
RoBERTa are used as the base encoder. Using
Longformer consistently helps on SCIFACT, but

does not help on the other two datasets. This is
unsurprising, since 27% of SCIFACT instances ex-
ceed the RoBERTa token limit, compared to less
than 15% for the other two datasets (Table 1).

Multitask modeling improves zero / few-shot
performance Results comparing our three dif-
ferent modeling approaches are shown in Table
3c. In the zero-shot setting, we find that Multitask
performs best, with both MT / PI and Pipeline ex-
hibiting performance drops greater than 50%. The
Multitask approach of predicting rationales con-
ditioned on the predicted label leads to improved
recall (see Table 9c). Similarly, in the few-shot
setting, both Pipeline and MT / PI perform roughly
10% worse than Multitask. Collectively, the results
indicate that Multitask makes the best use of the
available data when target annotations are limited.

We also find that MT / PI outperforms Pipeline
in the zero-shot setting. This supports our intu-
ition from §3.2 that, while training on weakly-
supervised document-level labels improves zero-
shot performance, training on weakly-supervised
sentence-level rationales (as for Pipeline) leads to
worse performance than not training on these ratio-
nales (as for MT / PI).

In the fully-supervised setting, Multitask per-
forms best on SCIFACT, while Pipeline slightly
outperforms Multitask on HealthVer and COVID-
Fact. MT / PI performs substantially worse than
the other approaches on all datasets. We investigate
these findings further in §7.1; our results indicate
that Pipeline may, in effect, be trained to make
predictions based on insufficient evidence.
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Pretraining HealthVer COVIDFact SCIFACT

Zero FEVERSCI 30.7 / 7.8 47.2 / 23.6 46.7 / 27.8
FEVER 1.3 / 0.7 25.2 / 11.2 23.9 / 11.8

Few
FEVERSCI 54.7 / 35.7 69.7 / 37.4 63.3 / 45.3
FEVER 53.4 / 31.9 74.4 / 42.1 54.5 / 39.0
No-Pretrain 39.4 / 27.0 67.8 / 22.6 24.2 / 10.8

Full
FEVERSCI 77.6 / 69.1 77.3 / 43.7 72.5 / 67.2
FEVER 77.1 / 70.3 77.4 / 43.3 67.9 / 61.7
No-Pretrain 74.5 / 69.7 69.7 / 36.6 63.3 / 58.4

(a) Effect of pretraining data. In-domain pretraining is very
effective in the zero- and few-shot settings. In the zero-shot
setting, “No-Pretrain” metrics are not shown since this would
correspond to no training at all.

Encoder HealthVer COVIDFact SCIFACT

Zero Longformer 30.7 / 7.8 47.2 / 23.6 46.7 / 27.8
RoBERTa 34.2 / 9.2 48.3 / 26.2 45.2 / 25.9

Few Longformer 54.7 / 35.7 69.7 / 37.4 63.3 / 45.3
RoBERTa 51.2 / 36.9 72.1 / 41.0 50.5 / 34.0

Full Longformer 77.6 / 69.1 77.3 / 43.7 72.5 / 67.2
RoBERTa 78.8 / 72.7 78.2 / 43.4 67.6 / 62.3

(b) Effect of base encoder. Longformer improves performance
on SCIFACT, which has the largest fraction of instances ex-
ceeding the RoBERTa token limit.

Approach HealthVer COVIDFact SCIFACT

Zero
Multitask 30.7 / 7.8 47.2 / 23.6 46.7 / 27.8
Pipe 3.2 / 0.9 19.0 / 10.5 22.5 / 12.8
MT / PI 4.5 / 1.8 26.7 / 13.5 28.3 / 17.7

Few
Multitask 54.7 / 35.7 69.7 / 37.4 63.3 / 45.3
Pipe 52.8 / 29.5 68.3 / 38.2 53.0 / 39.9
MT / PI 46.7 / 32.3 59.3 / 34.1 56.2 / 41.1

Full
Multitask 77.6 / 69.1 77.3 / 43.7 72.5 / 67.2
Pipe 78.4 / 69.2 77.6 / 47.7 70.9 / 66.2
MT / PI 70.6 / 64.3 73.3 / 44.0 60.3 / 57.0

(c) Effect of model architecture. The Multitask approach
performs best in the zero- and few-shot settings. We examine
the fully-supervised setting in detail in §7.1.

Table 3: Ablations examining the effects of pretraining
data, base encoder, and modeling approach. Entries are
formatted “{Abstract-level F1} / {Sentence-level F1}”.

7 Analysis

7.1 Fully-supervised Pipeline performance

In §6.2, we found that the Pipeline approach (but
not the MT / PI approach) performed on par with
the Multitask approach in the fully-supervised set-
ting. To understand this finding, we collected
detailed annotations for 128 claim / evidence in-
stances from the SCIFACT test set. For each in-
stance, an annotator indicated whether the anno-
tated rationales were “self-contained” — i.e. suffi-
cient to justify the fact-checking label when taken

Self-
contained

Context-
dependent

Approach P R F1 P R F1 %∆

Multitask 86.1 82.9 84.5 90.3 60.9 72.7 -14.0%
Pipeline 92.4 89.0 90.7 82.4 60.9 70.0 -22.8%
MT / PI 91.8 54.9 68.7 100.0 13.0 23.1 -66.4%

Count 82 46

Table 4: Performance of the Multitask, Pipeline, and MT
/ PI modeling approaches on SCIFACT instances with
rationales that are self-contained (can be interpreted in
isolation) or context-dependent (must be interpreted in
the context of the abstract). Evaluation is performed in
the abstract-provided setting. We report abstract-level
metrics; sentence-level results are similar. The %∆
indicates the drop in F1 score on context-dependent
instances relative to self-contained instances. Multitask
suffers the smallest performance loss, while MT / PI
suffers the largest.

in isolation, or “context-dependent” — i.e. only
sufficient when taken in the context of the abstract.
Figure 1 and Table 8 provide examples; see Choi
et al. (2021) for a detailed discussion of different
forms of context-dependence.6

Table 4 compares the performance of the
three modeling approaches on instances with self-
contained vs. context-dependent evidence. We
find that all approaches have lower performance
on context-dependent instances relative to self-
contained instances, but the size of the perfor-
mance drop varies widely. The Multitask approach
performs 14.0% worse on context-dependent in-
stances, while the Pipeline approach performs
22.8% worse. Most interestingly, MT / PI per-
forms 66.4% worse, driven predominantly by low
recall. The MT / PI model frequently (and cor-
rectly) predicts that context-dependent rationales
are not sufficient to justify a SUPPORTS / REFUTES

decision. These findings suggest that (1) the Mul-
titask approach is, as expected, best at verifying
claims with context-dependent evidence, and (2)
the Pipeline approach has, in effect, over-fit to
context-dependent rationales and learned to make
predictions based on insufficient evidence.

7.2 Performance upper bound

To determine an “upper bound” on the achievable
performance of scientific fact-checking models, we

6Unlike Choi et al. (2021), we do not include the presence
of acronyms as “context-dependent,” since an acronym can
be matched with its expansion based on surface-level textual
features. See Appendix C.2 for further analysis of acronyms.
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Abstract Sentence

P R F1 P R F1

VERT5ERINI 90.7 74.3 81.7 79.6 62.2 69.8
PARAGRAPHJOINT 87.2 64.4 74.1 76.7 55.1 64.1
MULTIVERS 87.4 75.2 80.9 80.5 70.3 75.0

Human 94.8 84.1 89.1 67.4 67.4 67.4

Table 5: Performance on SCIFACT in the “abstract-
provided” setting. Models exceed human agreement as
measured by sentence-level F1, but not abstract-level.

assign 151 claim-evidence pairs from SCIFACT for
independent annotation by two different annotators.
We estimate human-level performance by treating
the first annotator’s results as “gold,” and the sec-
ond annotator’s results as predictions. For compar-
ison, we make predictions using MULTIVERS and
our two baseline models, with candidate abstracts
provided as input. The results are shown in Table 5.
Existing systems already exceed human agreement
for sentence-level evaluation, but not abstract-level,
indicating that experts tend to agree on the overall
relationship between claim and abstract, but may
disagree about exactly which sentences contain the
best evidence. This constitutes another reason not
to rely solely on selected rationales when predict-
ing a fact-checking label: the choice of rationales
is itself somewhat subjective.

In addition, these results suggest that one key
subtask of scientific claim verification — namely,
predicting whether an evidence-containing abstract
SUPPORTS or REFUTES a claim — may be nearly
“solved” in the setting where (1) the claims are
atomic and (2) roughly 1,000 in-domain labeled
claims are available for training.

8 Related work

Background on scientific claim verification is cov-
ered in §2; we discuss other relevant work here.
Nye et al. (2020) have previously observed that
document-level context is often required to prop-
erly interpret scientific findings.

DeYoung et al. (2020) use an “extract-then-label”
pipeline for the original EVIDENCEINFERENCE

task. Multitask label prediction and rationale se-
lection was proposed by Pruthi et al. (2020) and
applied to sentiment analysis and propaganda de-
tection. As in this work, the authors condition on
the predicted label when predicting rationales. An-
other alternative to supervised rationale selection
is to treat rationales as latent variables (Lei et al.,
2016; Paranjape et al., 2020).

Long-document encodings for fact verification
have been explored by Stammbach (2021), who use
Big Bird (Zaheer et al., 2020) for full-document ev-
idence extraction from FEVER. Domain adaptation
for scientific text has been studied in a number of
works, including Gururangan et al. (2020); Beltagy
et al. (2019); Lee et al. (2020); Gu et al. (2021).
In those works, the primary focus is on language
model pretraining. Here, we focus on training on
the target task using out-of-domain and weakly-
labeled data.

9 Conclusion

This work points to a number of promising future
directions for scientific claim verification. These
include applying the approach presented here to de-
velop scientific claim verification models for new
scientific sub-domains or other specialized fields
given a handful of labeled examples, and extending
the task definition to verify claims against longer
contexts (e.g. full scientific papers) or larger cor-
pora. Our task formulation also offers an oppor-
tunity to study the effects of rationale decontex-
tualization (Choi et al., 2021), especially in cases
where models may be making predictions based on
insufficient evidence.

In presenting the MULTIVERS system, we ad-
dressed two challenges associated with scientific
claim verification: incorporating relevant informa-
tion beyond rationale boundaries by modeling full-
document context, and facilitating zero / few-shot
domain adaptation through weak supervision en-
abled by a multitask modeling approach. Our ex-
periments show that MULTIVERS outperforms ex-
isting systems across several scientific claim veri-
fication datasets. We hope that the task, data, and
modeling resources presented in this paper will
encourage further work and progress towards the
broader goals of identifying and addressing scien-
tific mis- and disinformation.

10 Ethical considerations and broader
impact

One long-term goal of research on scientific claim
verification is to build systems that can automati-
cally identify mis- and dis-information, which we
believe would be socially beneficial given the cur-
rent prevalence of mis- and dis-information online.

In the shorter term, this work presents two po-
tential risks. First, automated systems for scientific
fact-checking are not mature enough to inform real-
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world medical decisions. We will include a dis-
claimer with released software to this effect. Sec-
ond, bad actors could potentially use this work to
develop disinformation generators trained to “fool”
automated fact-checkers. While this risk cannot
be ruled out, we believe that the benefits of pub-
lishing this work and making our models available
to the community to facilitate further research out-
weigh the risks that this work will be misused by
malicious actors.
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A Data processing and statistics

A.1 Data preprocessing

SCIFACT We use SCIFACT in its original form,
as it was released by the paper authors (Wadden
et al., 2020).

HealthVer The HealthVer (Sarrouti et al., 2021)
data release available at https://github.com/

sarrouti/HealthVer appears in NLI format, pair-
ing claims with evidence-containing sentences;
the documents from which the sentences were
extracted are not provided. We match evidence-
containing sentences to their abstracts in the
CORD-19 corpus (Wang et al., 2020) using a sim-
ple substring search, after normalizing for capital-
ization and whitespace differences. Evidence for
which no match was found in the corpus is dis-
carded.

We then segment the abstracts into sentences.
Any sentence in the abstract with a string overlap
of > 50% with the evidence provided in the origi-
nal data is marked as a rationale. A small number
of claims in HealthVer had both supporting and
refuting evidence in the same abstract; we remove
these claims as well to conform to our task defini-
tion. Modeling conflicting evidence is a promising
direction for future work.
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COVIDFact The COVIDFact data available
at https://github.com/asaakyan/covidfact is
released in a similar format to HealthVer. Like
HealthVer, we perform string search over CORD-
19 to identify the abstracts containing evidence,
and use the same procedure for assigning rationale
labels to sentences from the abstract. COVIDFact
also includes evidence from sources scraped from
the web that are not contained in CORD-19, such
as news articles. These sources are not provided
with the data release; we discard evidence from
non-CORD-19 sources7.

Refuted claims in COVIDFact are generated
automatically by replacing words in the original
claim. Based on a manual inspection, we found this
process to generate a truly refuted claim roughly a
third of the time; in most other cases, it generated
a claim that was either ungrammatical or for which
the provided evidence was irrelevant. A few cases
are provided in Table 6.

FEVER We use the FEVER dataset as-is.

EVIDENCEINFERENCE The EVIDENCEINFER-
ENCE dataset consists of “ICO” (intervention / com-
parator / outcome) prompts, paired with labels in-
dicating whether the intervention leads to an in-
crease, decrease, or no change in the outcome with
respect to the comparator. The dataset is avail-
able at https://evidence-inference.ebm-nlp.
com/. We use templates to convert these prompts to
claims. See Figure 2 for an example. Rationale an-
notations are provided for this dataset. Additional
examples of templates are below; the full list will
be included in the code release. Refuted claims are
generated by swapping “increase” and “decrease”
templates.

• Increase: [intervention] raises [outcome] rel-
ative to [comparator]

• No change: [intervention] and [comparator]
have very similar effects on [outcome]

• Decrease: [intervention] results in a decrease
in [outcome], relative to [comparator]

PUBMEDQA We use the PQA-A subset released
at https://pubmedqa.github.io/, which is fil-
tered for “claim-like” titles. We generate negations
by identifying titles with the phrases “does not”,

7Upon request, the paper authors did kindly provide us
with scraped evidence documents. Unfortunately, we did
not have time to re-run our experiments on these additional
sources.

Intervention

metronidazole

Comparator

placebo

Outcome

pre-term birth

Label

decreased

Treatment with metronidazole decreases pre-term 
birth relative to placebo

Figure 2: An example showing how an evidence infer-
ence prompt (top) can be converted into a claim (bottom)
using templates. A refuted claim could be generated by
substituting “increases” for “decreases” in the prompt
text.

“do not”, “are not”, “is not”. “Does not” and “do
not” are removed and the relevant verbs are mod-
ified to have the correct inflection; for instance
“smoking does not cause cancer” is converted to
“smoking causes cancer”. Similarly, “are not” and
“is not” are replaced by “are” and “is”.

To generate rationales needed to train pipeline
models on PUBMEDQA, we employ the following
procedure. First, we encode the claim and all ab-
stract sentences using the all-MiniLM-L6-v2
model from the Sentence-Transformers package
https://www.sbert.net/. Then, we rank ab-
stract sentences by cosine similarity with the claim
and label the top-k sentences as rationales, where
k is randomly sampled from {1, 2, 3} with a 4:2:1
frequency ratio (this matches the distribution of k
in SCIFACT).

A.2 Dataset statistics
Table 7 provides counts showing the number of
claim / evidence pairs with each label (SUPPORTS,
REFUTES, NEI), in each of our target datasets.
Note that a given claim may be (and often is) paired
with more than one abstract containing evidence.
HealthVer is the largest dataset. COVIDFact is
the smallest, in part due to the aggressive evidence
filtering described in §A.1.

A.3 Examples of context-dependent rationales
Table 8 provides an example of a context-
dependent rationale (as defined in §7.1), as well
as an example of a rationale with an undefined
acronym. The latter occurs when an acronym ap-
pears in a rationale but its full expansion does not;
an analysis of undefined acronyms is included in
Appendix C.2. The code and data release will con-
tain full annotations indicating which of the 128
human-annotated examples described in §7.1 are
context-dependent, and which contain undefined
acronyms.
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Original claim Automatic negation Comment

Sars-cov-2 reactive t cells . . . are likely
expanded by beta-coronaviruses

Sars-cov-2 reactive t cells . . . are not
expanded by beta-coronaviruses Successful negation

Regn-cov2 antibody cocktail prevents
and treats sars-cov-2 . . .

On-cov2 antibody cocktail prevents
and treats sars-cov-2 infection . . .

Ungrammatical; “On-cov2” isn’t a
scientific entity.

. . . immunity is maintained at 6
months following primary infection

. . . immunity is maintained at 6 weeks
following primary infection

Not refuted; The original claim entails the
negation. Immunity at 6 months implies
immunity at 6 weeks.

Table 6: Automatic negations from COVIDFact. Some are successful, in the sense that the attempted negation
contradicts the original claim. Others are either ungrammatical or are entailed by the original claim.

Fold Dataset SUPPORTS NEI REFUTES

Train
SCIFACT 508 485 265
COVIDFact 299 - 641
HealthVer 2384 2384 1464

Eval
SCIFACT 113 127 109
COVIDFact 102 - 215
HealthVer 374 304 225

Table 7: Evidence distribution by dataset.

A.4 Annotators
In §7, we report an analysis based on annotations
performed on the SCIFACT dataset. These annota-
tions were performed by students and / or profes-
sional annotators associated with the authors’ re-
search institutions. Annotators were paid between
$15 and $20 / hour.

B Modeling details

B.1 Implementation
We implement MULTIVERS using PyTorch Light-
ning (https://www.pytorchlightning.ai/),
which relies on PyTorch (https://pytorch.
org/).

B.2 Model training
Pretraining For pretraining, we train for 3
epochs on FEVER, EVIDENCEINFERENCE, and
PUBMEDQA, with the data randomly shuffled. We
train on 4 negative samples (i.e. abstracts contain-
ing no evidence) per claim, which we find improves
precision. We train on 8 NVIDIA RTX 6000 GPUs
with a batch size of 1 / gpu (effective batch size
of 8), using a learning rate of 1e − 5, using the
PyTorch Lightning implementation of the AdamW
optimizer with default settings. We initialize from
a Longformer-large checkpoint pretrained on the
S2ORC corpus (Lo et al., 2020).

Finetuning For finetuning, we train for 20
epochs on the target dataset (SCIFACT, HealthVer,

or COVIDFact). For SCIFACT, we train on 20 neg-
ative samples / claim. To create “hard” negatives
— i.e. abstracts that have high lexical overlap with
the claim — we create a search index from 500K
abstracts randomly selected from the biomedical
subset of the S2ORC corpus. For each claim, we
obtain negative abstracts by using the VERT5ERINI

retrieval system from §3.1 to retrieve the top-1000
most-similar abstracts from this index, removing
abstracts that are annotated as containing evidence,
and randomly sampling 20 abstracts to be used as
negatives during training.

Since HealthVer and COVIDFact do not have
a retrieval step, they do not require negative sam-
pling, and we train on the original datasets as-is.

Retrieval For SCIFACT, we performed dev set
experiments retrieving 10, 20, or 50 abstracts /
claim, and found that 10 was the best. We use
that in our final experiments.

B.3 Model hyperparameters
No organized hyperparameter search was per-
formed. We consulted with the authors of the Long-
former paper for suggestions about good model pa-
rameters, and generally followed their suggestions.

The loss function in Section 3.1 requires a
weight λrationale. This is set to 15 for all final experi-
ments. We informally experimented with values of
1, 5, and 15; no organized hyperparameter search
was performed. We selected the learning rate from
the values [9e− 5, 5e− 5, 1e− 5].

We performed all experiments with the
same random seed, 76, used by invoking the
seed_everything function in PyTorch Light-
ning.

All reported results are from a single model run.

B.4 Baselines
VERT5ERINI For prediction on SCI-
FACT, we use the checkpoint available at
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Category Example

Context-
dependent

Claim: Errors in peripheral IV drug administration are most common during bolus administration

Context: OBJECTIVES: To determine the incidence of errors in the administration of intravenous
drugs . . .

Evidence: . . . Most errors occurred when giving bolus doses
Explanation: The evidentiary sentence reporting the finding does not specify the type of error.

Undefined
acronym

Claim: Hematopoietic stem cells segregate their chromosomes randomly.
Context: we tested these hypotheses in hematopoietic stem cells (HSCs). . .
Evidence: . . . indicated that all HSCs segregate their chromosomes randomly.
Explanation: HSCs is an acronym for Hematopoietic stem cells.

Table 8: Examples from the SCIFACT dataset showcasing rationales that are context-dependent (top example), or
include an undefined acronym (bottom example).

https://github.com/castorini/pygaggle/

tree/master/experiments/vert5erini. For
COVIDFact and HealthVer, we follow the instruc-
tions in that repository to convert the data to the
required format, and train using the available
training code as-is, beginning from the available
SCIFACT checkpoint. We used Google Cloud TPU
for training and inference.

PARAGRAPHJOINT We use the code
available at https://github.com/jacklxc/

ParagraphJointModel. For predictions on
SCIFACT, we make predictions using the publicly
available checkpoint. For the other two target
datasets, we use the training code in the repo
without modification.

We used PARAGRAPHJOINT as our baseline for
zero / few-shot learning experiments, and hence
also performed pretraining on PARAGRAPHJOINT.
The repository provides code to train on the FEVER

dataset, which we used for pretraining with EVI-
DENCEINFERENCE and PUBMEDQA added to the
data.

C Additional results and analysis

C.1 Full ablation results
In Table 3, we presented F1 scores for ablations
comparing pretraining data, model architecture,
and encoder used. Table 9 presents the full results,
including precision and recall.

C.2 Performance on rationales with undefined
acronyms

In §7.1, we examined the difference in perfor-
mance on instances with self-contained vs. context-
dependent evidence. Here, we show the results of
evaluation on instances containing an undefined
acronym vs. cases without one. We find that unde-
fined acronyms do not pose a challenge for Multi-

task and Pipeline, but do cause a small performance
drop on MT / PI.

C.3 Negative sampling

In §5.1 we described how, for SCIFACT, we trained
on 20 negative abstracts per claim. The effect
of training on these additional negative samples
is shown in Figure 11. In the abstract-provided
setting, negative sampling is not very beneficial.
However, when the model must select evidence
from retrieved abstracts, precision drops off dra-
matically without negative sampling. This is worth
noting since it suggests that performance reported
when models are provided with “gold” candidate
abstracts may not offer an accurate estimate of the
accuracy these systems would achieve when de-
ployed in a real-world setting, which could require
systems to verify claims over hundreds of thou-
sands of documents.

C.4 Cross-dataset generalization

In §5, we discussed how the available scientific fact-
checking datasets differ in a number of important
respects. Here, we explore whether models trained
on one system are able to generalize to another
despite these differences. We train MULTIVERS
on each of our three datasets and then evaluate its
performance on the other two. We also train a ver-
sion of MULTIVERS on all three datasets together,
and evaluate on each one. Since COVIDFact has
no NEI instances, during evaluation we remove
all NEI instances from the other two datasets, and
evaluate in the abstract-provided setting.

The results are shown in Table 12. The sentence-
level evaluation results (Table 12b) indicate that
none of the datasets generalize well to each other
in their ability to identify rationales. The situation
is better for abstract labeling (Table 12a). SCIFACT

and HealthVer each generalize reasonably well to
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HealthVer COVIDFact SCIFACT
Abstract Sentence Abstract Sentence Abstract Sentence

Pretraining P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Zero FEVERSCI 60.6 20.5 30.7 25.0 4.6 7.8 48.8 45.7 47.2 32.7 18.5 23.6 49.0 44.6 46.7 39.0 21.6 27.8
FEVER 80.0 0.7 1.3 66.7 0.4 0.7 95.8 14.5 25.2 63.5 6.2 11.2 83.8 14.0 23.9 64.9 6.5 11.8

Few
FEVERSCI 63.6 47.9 54.7 41.9 31.0 35.7 71.3 68.1 69.7 39.5 35.4 37.4 76.4 54.1 63.3 51.7 40.3 45.3
FEVER 56.4 50.8 53.4 34.8 29.4 31.9 74.4 74.4 74.4 39.3 45.3 42.1 72.4 43.7 54.5 48.8 32.4 39.0
No-Pretrain 38.5 40.4 39.4 28.5 25.7 27.0 67.8 67.8 67.8 24.9 20.7 22.6 20.0 30.6 24.2 9.5 12.7 10.8

Full
FEVERSCI 78.9 76.3 77.6 71.4 67.0 69.1 77.3 77.3 77.3 41.5 46.1 43.7 73.8 71.2 72.5 67.4 67.0 67.2
FEVER 77.5 76.6 77.1 70.8 69.8 70.3 77.5 77.3 77.4 40.6 46.5 43.3 64.3 72.1 67.9 57.1 67.0 61.7
No-Pretrain 75.0 74.0 74.5 71.8 67.8 69.7 69.7 69.7 69.7 35.3 38.1 36.6 64.9 61.7 63.3 62.7 54.6 58.4

(a) Effect of pretraining data.

HealthVer COVIDFact SCIFACT
Abstract Sentence Abstract Sentence Abstract Sentence

Encoder P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Zero Longformer 60.6 20.5 30.7 25.0 4.6 7.8 48.8 45.7 47.2 32.7 18.5 23.6 49.0 44.6 46.7 39.0 21.6 27.8
RoBERTa 59.5 24.0 34.2 25.4 5.6 9.2 49.3 47.3 48.3 35.2 20.9 26.2 45.5 45.0 45.2 34.4 20.8 25.9

Few Longformer 63.6 47.9 54.7 41.9 31.0 35.7 71.3 68.1 69.7 39.5 35.4 37.4 76.4 54.1 63.3 51.7 40.3 45.3
RoBERTa 55.0 47.9 51.2 39.0 35.0 36.9 72.5 71.6 72.1 39.7 42.5 41.0 59.0 44.1 50.5 36.8 31.6 34.0

Full Longformer 78.9 76.3 77.6 71.4 67.0 69.1 77.3 77.3 77.3 41.5 46.1 43.7 73.8 71.2 72.5 67.4 67.0 67.2
RoBERTa 77.8 80.0 78.8 73.4 72.0 72.7 78.2 78.2 78.2 40.8 46.3 43.4 67.1 68.0 67.6 62.7 61.9 62.3

(b) Effect of base encoder.

HealthVer COVIDFact SCIFACT
Abstract Sentence Abstract Sentence Abstract Sentence

Approach P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Zero
Multitask 60.6 20.5 30.7 25.0 4.6 7.8 48.8 45.7 47.2 32.7 18.5 23.6 49.0 44.6 46.7 39.0 21.6 27.8
Pipe 58.8 1.7 3.2 29.4 0.5 0.9 67.3 11.0 19 57.4 5.8 10.5 80.6 13.1 22.5 72.2 7.0 12.8
MT / PI 60.9 2.3 4.5 41.7 0.9 1.8 78.5 16.1 26.7 57.7 7.6 13.5 80.9 17.1 28.3 75.5 10.0 17.7

Few
Multitask 63.6 47.9 54.7 41.9 31.0 35.7 71.3 68.1 69.7 39.5 35.4 37.4 76.4 54.1 63.3 51.7 40.3 45.3
Pipe 56.3 49.7 52.8 32.6 27.0 29.5 69.4 67.2 68.3 40.6 36.0 38.2 54.8 51.4 53.0 43.7 36.8 39.9
MT / PI 67.0 35.9 46.7 44.5 25.3 32.3 72.6 50.2 59.3 40.2 29.7 34.1 85.3 41.9 56.2 54.7 33.0 41.1

Full
Multitask 78.9 76.3 77.6 71.4 67.0 69.1 77.3 77.3 77.3 41.5 46.1 43.7 73.8 71.2 72.5 67.4 67.0 67.2
Pipe 78.7 78.1 78.4 70.2 68.3 69.2 79.9 75.4 77.6 48.2 47.2 47.7 68.5 73.4 70.9 64.5 68.1 66.2
MT / PI 77.6 64.8 70.6 70.0 59.5 64.3 77.7 69.4 73.3 43.6 44.4 44.0 80.5 48.2 60.3 70.5 47.8 57.0

(c) Effect of model architecture.

Table 9: Full ablation results.

each other, but not to COVIDFact. COVIDFact
generalizes well to SCIFACT, but not to HealthVer.
In general, SCIFACT appears the “easiest” dataset
to generalize to; this could be explained by the fact
that SCIFACT claims were written to be atomic and
therefore simple to verify.

Finally, a model trained on all datasets combined
manages to achieve reasonable performance across
all three datasets, though falling short of the per-
formance of models trained specifically for each
individual dataset.

No undefined
acronym

Undefined
acronym

Approach P R F1 P R F1 %∆

Multitask 88.1 73.8 80.3 86.0 77.1 81.3 1.2%
Pipeline 89.9 77.5 83.2 88.6 81.2 84.8 1.9%
MT / PI 97.1 42.5 59.1 85.0 35.4 50.0 -15.4%

Count 80 48

Table 10: Performance of different modeling approaches
on instances with vs. without an undefined acronym.
We perform evaluation on the same data as reported in
Table 4.
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Retrieval
Neg.
sample

Abstract Sentence

P R F1 P R F1

Abstract-
provided

✗ 81.9 85.6 83.7 69.5 69.7 69.6
✓ 85.2 75.2 79.9 79.0 70.3 74.4

Open ✗ 38.9 80.6 52.5 35.4 65.1 45.9
✓ 73.8 71.2 72.5 67.4 67.0 67.2

Table 11: Effect of negative sampling on SCIFACT.

Eval → HealthVer COVIDFact SCIFACT

Train ↓ F1 ∆ F1 ∆ F1 ∆

HealthVer 86.1 0.0 50.2 -24.0 73.4 -15.8
COVIDFact 50.6 -35.6 74.1 0.0 76.1 -13.1
SCIFACT 70.5 -15.7 54.6 -19.6 89.2 0.0

Combined 83.0 -3.2 64.3 -9.8 87.8 -1.3

(a) Abstract-level evaluation. SCIFACT and HealthVer gener-
alize fairly well to each other. COVIDFact generalizes well to
SCIFACT, but not HealthVer.

Eval → HealthVer COVIDFact SCIFACT

Train ↓ F1 ∆ F1 ∆ F1 ∆

HealthVer 74.2 0.0 28.0 -12.6 39.7 -32.4
COVIDFact 14.6 -59.5 40.6 0.0 41.6 -30.6
SCIFACT 20.5 -53.7 33.9 -6.7 72.1 0.0

Combined 71.4 -2.8 39.8 -0.9 70.5 -1.6

(b) Sentence-level evaluation. None of the datasets generalize
particularly well to each other. HealthVer generalizes better to
SCIFACT than vice versa.

Table 12: Cross-dataset generalization performance.
The rows and columns indicate the training and eval-
uation datasets, respectively. The ∆ values indicate
the loss in performance from evaluating on a dataset
different from the one the model was trained on. The
“Combined” row indicates training on all datasets com-
bined.

76


