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Abstract

Classifying the core textual components of a
scientific paper—title, author, body text, etc.—
is a critical first step in automated scientific
document understanding. Previous work has
shown how using elementary layout informa-
tion, i.e., each token’s 2D position on the page,
leads to more accurate classification. We in-
troduce new methods for incorporating VIsual
LAyout (VILA) structures, e.g., the grouping
of page texts into text lines or text blocks,
into language models to further improve per-
formance. We show that the I-VILA approach,
which simply adds special tokens denoting the
boundaries of layout structures into model in-
puts, can lead to 1.9% Macro F1 improve-
ments for token classification. Moreover, we
design a hierarchical model, H-VILA, that
encodes the text based on layout structures
and record an up-to 47% inference time re-
duction with less than 1.5% Macro F1 loss
for the text classification models. Experi-
ments are conducted on a newly curated eval-
uation suite, S2-VLUE, with a novel metric
measuring classification uniformity within vi-
sual groups and a new dataset of gold an-
notations covering papers from 19 scientific
disciplines. Pre-trained weights, benchmark
datasets, and source code will be available at
https://github.com/allenai/VILA.

1 Introduction

Scientific papers are usually stored in the Portable
Document Format (PDF) without extensive se-
mantic markup. It is critical to extract structured
document representations from these PDF files
for downstream NLP tasks (Beltagy et al., 2019;
Wang et al., 2020) and to improve PDF accessibil-
ity (Wang et al., 2021). Unlike other real-world doc-
uments, scholarly documents are usually typeset
with rectilinear templates of layout structures with
interleaving textual and image objects. As shown in
Figure 1 (a), while this rich layout information can
signal semantics, existing methods (Devlin et al.,

2019; Beltagy et al., 2019) resort to analyzing the
flattened text obtained by PDF-to-text converters,
ignoring the style and layout information stored in
the original file.

Recent methods demonstrate that token-level
position information, i.e., tokens’ 2D spatial lo-
cation on the page, can be incorporated to im-
prove language models by introducing position-
awareness (Xu et al., 2020b) and enhance scien-
tific document parsing (Li et al., 2020). However,
humans reading these documents also make use
of high-level layout structures like the grouping
of text blocks1 and lines (Todorovic, 2008) to in-
fer the semantic contents accordingly, which we
refer to as structure-awareness. Existing models
do not explicitly incorporate structure-awareness,
resulting in two major drawbacks: 1) deprived of
structure-awareness, token-level predictions can be
inconsistent within a group (Li et al., 2020); 2) the
inference process is less efficient, as redundant pre-
dictions need to be made for each token within a
group.

In this paper, we investigate to what extent such
VIsual LAyout (VILA) structures can be used to
improve NLP models for parsing scholarly docu-
ments. Following Zhong et al. (2019) and Tkaczyk
et al. (2015)’s work, our key assumption is that
a document page can be segmented into visual
groups of tokens (either lines or blocks), and the
tokens in a group typically have the same semantic
category, as shown in Figure 1 (b), which we refer
to as the group uniformity assumption. We firstly
show that VILA can be used as an additional in-
formation source to improve existing BERT-based
language models (Devlin et al., 2019). Moreover,
VILA can also be used as a strong prior that guides
the design of model architecture. By injecting spe-

1In this paper, we consider a text block to be a group
of tokens that appear adjacent to each other on a page, are
visually set off from other tokens, and belong to the same
semantic category. Section headers, lists, equation regions,
etc. are valid instances of text blocks.
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Figure 1: (a) Real-world scientific documents usually have intricate layout structures, and analyzing the flattened
raw text could be sub-optimal. (b) The complex structures could be broken down into groups like text blocks
and lines that are composed of tokens with the same semantic category. (c) We design the I-VILA model that
injects a special layout indicator token [BLK] into the text inputs to enable structure-awareness. (d) We also
develop a hierarchical model, H-VILA, that models each group to reduce the redundant token-level predictions
and significantly improve efficiency.

cial layout indicator tokens that delimit boundaries
between blocks or lines into existing textual inputs,
the I-VILA models are informed of the document
structure, and yield token predictions of better accu-
racy and consistency. Further, the group uniformity
assumption suggests that semantic category predic-
tion can be performed at the group level rather than
the token level. We therefore introduce a hierarchi-
cal model, H-VILA, uses the layout structure to
represent a page as a two-level hierarchy of groups
and tokens. Because the individual groups can be
modeled independently, this reduces the number
of tokens that must be fed into the transformer at
once, improving efficiency.

The proposed methods are evaluated on a newly
designed benchmark suite, the Semantic Scholar
Visual Layout-enhanced Scientific Text Under-
standing Evaluation (S2-VLUE). The benchmark
consists of two datasets built on existing re-
sources (Tkaczyk et al., 2015; Li et al., 2020) and
a newly curated dataset S2-VL. With high-quality
human annotations for papers from 19 disciplines,
S2-VL fills important gaps of existing data sets,
which only contain machine-generated labels for
papers from certain domains. Besides typical mea-
surements of prediction accuracy, we also introduce
a novel metric, group category inconsistency, that
measures the homogeneity of token classes within
each group in terms of entropy. This metric indi-
cates how well the token categories accord with
VILA structures.

Our study is well-aligned with recent efforts for

incorporating structural information into language
models (Lee et al., 2020; Bai et al., 2020; Yang
et al., 2020; Zhang et al., 2019). However, one key
difference is that we obtain the structure from lay-
out rather than language structures like sentences
or paragraphs. Evaluated on S2-VLUE, we show
that when available, VILA structures lead to better
prediction accuracy compared to using language
structures.

Our main contributions are as follows:

1. We explore new ways of injecting layout in-
formation in terms of VILA structures into
language models, and find that they can im-
prove text classification for scientific text.

2. We design two models that incorporate VILA
features differently. The I-VILA model injects
special layout indicator tokens into the text in-
puts and improves prediction accuracy (up to
+1.9% Macro F1) and consistency compared
to previous layout-augmented language mod-
els. The H-VILA model performs group-level
predictions and can reduce the inference time
by 47% with less than 1.5% Macro F1 loss.

3. We construct a unified benchmark suite S2-
VLUE to systematically evaluate performance
on the scientific document text classification
task with layout features. We enhance exist-
ing datasets with VILA structures, develop a
novel dataset S2-VL that addresses gaps in
existing resources, with gold labels for 16 to-
ken categories and VILA structures for papers
from 19 disciplines.



As suggested by improvements on our compre-
hensive benchmark, our proposed methods also
have the potential to benefit PDF extraction in the
general domain. The benchmark datasets, model-
ing code, and trained weights will be available at
https://github.com/allenai/VILA.

2 Related Work

The complex organization of scientific paper el-
ements poses a challenge for identifying the key
semantic components and converting them to a
structured format. Previous work tackles this chal-
lenge by utilizing visual or textual features from
the documents.

Vision-based Approaches (Zhong et al., 2019;
He et al., 2017; Siegel et al., 2018) treat this task
as an image object detection problem: given an
image of a document page, the models predict a se-
ries of rectangular bounding boxes segmenting the
page into individual components of different cate-
gories. These models excel at capturing complex
visual layout structures like figures or tables, but
cannot accurately generate fine-grained semantic
categories like title, author, or abstract, which are
of central importance for parsing scientific docu-
ments.

Text-based Methods, on the other hand, for-
mulate this task as a text classification problem.
Methods like ScienceParse (Ammar et al., 2018),
GROBID (GRO, 2008–2021) or Corpus Conver-
sion Service (Staar et al., 2018) firstly convert
a source PDF document to a sequence of to-
kens via PDF-to-text parsing engines like CER-
MINE (Tkaczyk et al., 2015) or pdfalto.2 Machine
learning models like RNN (Hochreiter and Schmid-
huber, 1997), CRF (Lafferty et al., 2001), or Ran-
dom Forest (Breiman, 2001) trained to model the
input texts are then used to classify the token cat-
egories. However, without considering document
visual structures, these trained models fall short in
prediction accuracy or generalize poorly for out-of-
domain documents.

Recently, Joint Approaches have been explored
that combine visual and textual features to boost
model performance. The LayoutLM model (Xu
et al., 2020b) combines token textual and 2D po-
sition information, and records a 6% F1 improve-
ment over the baseline BERT model (Devlin et al.,
2019) on a scientific text classification task (Li
et al., 2020). Livathinos et al. (2021) built a

2https://github.com/kermitt2/pdfalto

seq2seq model (Sutskever et al., 2014) incorporat-
ing both layout and text features that significantly
improves model robustness on an evaluation set of
diverse paper layouts. Very recent work like Lay-
outLMv2 (Xu et al., 2020a) and SelfDoc (Li et al.,
2021) proposes to incorporate documents’ image
features when modeling the text, yet it is shown
less helpful for text-dense scholarly articles (Li
et al., 2021).

The training and evaluation datasets of these
models are in many cases automatically gen-
erated using paper XML source from PubMed
Central (Ammar et al., 2018; GRO, 2008–2021;
Tkaczyk et al., 2014) or LaTeX source from
arXiv (Li et al., 2020). Despite having large sam-
ple sizes, these datasets do not contain significant
layout variation, leading to poor generalization to
papers from other disciplines with distinct layouts.
Also, due to the heuristic nature in which these
datasets are constructed, they contain systematic
classification errors that can affect downstream
modeling performance. We refer the readers to
a more detailed description of the limitations for
the GROTOAP2 (Tkaczyk et al., 2014) and the
DocBank Dataset (Li et al., 2020) in Section 4.1.
The PubLayNet dataset (Zhong et al., 2019) pro-
vides high-quality text block annotations on 330k
document pages; however, its annotations only in-
clude five distinct categories, which is insufficient
for fully representing the semantic elements found
in papers. Livathinos et al. (2021) and Staar et al.
(2018) curated a dataset with manual annotations
on 2,940 paper pages from various publishers us-
ing diverse layouts, but only the processed page
features are publicly available, not the raw paper
texts or the source PDFs needed for experiments
with new layout-aware methods.

3 Method

3.1 Problem Formulation

Following the previous literature (Tkaczyk et al.,
2015; Li et al., 2020), our task is to map each token
ti from an input document to a semantic category
ci such as title, body text, or reference. For sim-
plicity, we consider only a page of a paper as input;
different pages are separately modeled. Input to-
kens are extracted via PDF-to-text tools, which
output both the word wi and its 2D position, i.e,
the rectangular bounding box ai = (x0, y0, x1, y1)
denoting the left, top, right, and bottom position of
the word boundary. Formally, the input sequence

https://github.com/allenai/VILA


Figure 2: Visualization of the token level prediction results on the original page. From left to right, we present the
ground-truth token category and text block bounding boxes (highlighted in red rectangles), and model predictions
from the baseline, I-VILA, and H-VILA model. We use G(B) for VILA-based methods. When VILA is injected,
the model achieves more consistent predictions as indicated by arrow (1) and (2) in the figure.

is T = (t1, . . . , tn) where ti = 〈wi, ai〉 and the
output sequence is (c1, . . . , cn). It’s worth noting
that the order of tokens in sequence T might not
reflect the actual reading order of text due to incor-
rect PDF-to-text conversion (e.g., in the DocBank
dataset (Li et al., 2020)), which is an additional
challenge for language models pre-trained on regu-
lar texts.

Besides the token sequence T , additional visual
structures G can also be retrieved from the source
document. Scientific documents are organized into
groups of tokens text lines or blocks, which consist
of consecutive pieces of text and can be segmented
from other pieces based on spatial gaps. The group
information can be extracted via visual layout de-
tection models (Zhong et al., 2019; He et al., 2017)
or PDF parsing (Tkaczyk et al., 2015).

Formally, given an input page, our system de-
tects a series ofm rectangular boxes for each group
B = {b1, . . . , bm} in the input document page. It
further allocates the page tokens to the group re-
gion and generates the visual groups gi = (bi, ti),
where ti = {tj | aj � bi, tj ∈ T} is all tokens in
the i-th group, and aj � bi denotes the center point
of token tj’s bounding box aj is strictly within the
group box bi. When two group regions overlap
and share some common tokens, the system will
only assign each token to the earlier (in terms of
estimated reading order) of the two groups. The
token order in each group is consistent with the
token order extracted from the page.

We refer to text block groups of a page as G(B)

and text line groups as G(L). In our case, we de-
fine text lines as consecutive tokens appearing at

the nearly same vertical position.3 Text blocks
are adjacent text lines with gaps smaller than a
certain threshold, and the same semantic category.
That is, even two close lines of different semantic
categories should be allocated to separate blocks.
However, in practice, block or line detectors may
generate incorrect predictions.

In the following sections, we show how language
models can benefit from these different types of
document structures.

3.2 I-VILA: Injecting Visual Layout
Indicators

According to the group uniformity assumption, to-
ken categories are homogeneous within a group,
and categorical changes should happen at group
boundaries. This suggests that layout information
should be incorporated in a way that informs to-
ken category consistency intra-group and signals
possible token category changes inter-group.

Our first method supplies VILA structures via in-
serting a special layout indicator token at the group
boundary in the input text, which we refer to as the
I-VILA method. Compared to Xu et al. (2020b),
our method provides explicit document structure
signals. As shown in Figure 1(c), the inserted to-
kens highlight individual text segments, resulting
in a more structured input for the language mod-
els that hints at possible category changes. Ad-
ditionally, in I-VILA, the special token is seen at
all layers of the model, providing VILA signals
at different stages of modeling, rather than only
providing positional information at the initial em-

3Or horizontal position, when the text is written vertically.



bedding layers (Xu et al., 2020b). We empirically
show that BERT-based models can learn to leverage
such special tokens to improve both the accuracy
and the consistency of category predictions, even
without an additional loss penalizing inconsistent
intra-group predictions.

In practice, given G, we linearize tokens ti
from each group and flatten them into a 1D se-
quence TG. To avoid capturing confounding in-
formation in existing pre-training tasks, we in-
sert a new special token [BLK] in-between ti
texts. The resulting input sequence is of the
form {[CLS], t1,1, . . . , ti,ni ,[BLK], ti+1,1, . . . ,
tm,nm ,[SEP]}, where ti,j and ni indicate the j-
th token and the total number of tokens respectively
in the i-th group, and [CLS] and [SEP] are the
special tokens used by the BERT model and are
inserted to preserve a similar input structure. The
BERT-based models are fine-tuned over the token
classification objective with a cross entropy loss.
Token positions can also be injected in a similar
way as in LayoutLM (Xu et al., 2020b), and the po-
sitional embedding for the newly injected [BLK]
tokens are derived from the corresponding group’s
bounding box bi.

3.3 H-VILA: Visual Layout-guided
Hierarchical Model

The uniformity of group token categories also sug-
gests the possibility of building a group-level clas-
sifier. Inspired by recent advances in modeling
long documents, hierarchical structures (Yang et al.,
2020; Zhang et al., 2019) provide an ideal architec-
ture for the end task while optimizing for com-
putational cost. Illustrated in Figure 1(d), two
transformer-based models are used to encode each
group in terms of its words and modeling the whole
document in terms of the groups, respectively, and
we provide the modeling details as follows.

The Group Encoder is a l1-layer transformer
that converts each group gi into a hidden vector
hi. Following the typical transformer model set-
ting (Vaswani et al., 2017), the model takes a col-
lection of tokens within a group ti as input, and
maps each token ti,j into a dense vector ei,j of
dimension d. Subsequently, a group vector aggre-
gation function f : Rni×d → Rd is applied that
projects the token representations (ei,1, . . . , ei,ni)
to a single vector h̃i that represents the group’s tex-
tual information. A group’s 2D spatial information
is incorporated in the form of positional embed-

dings, and the final group representation hi can be
calculated as:

hi = h̃i + p(bi). (1)

where p is the 2D positional embedding similar to
the one used in LayoutLM:

p(b) =Ex(x0) + Ex(x1) + Ew(x1 − x0)+ (2)

Ey(y0) + Ey(y1) + Eh(y1 − y0),

where Ex, Ex, Ew, Eh are the embedding matri-
ces for x, y coordinates and width and height. We
enable model position-awareness at the group level
rather than the token level to avoid capturing noisy
positional signals from individual tokens. In prac-
tice, we find that injecting positional information
using the bounding box of the first token within the
group leads to better results, and we choose group
vector aggregation function f to be the average
over all tokens representations.

The Page Encoder is another stacked trans-
former model of l2 layers that operates on the
group representation hi generated by the group
encoder. Modeling text representations with both
structure- and position-awareness, the page encoder
efficiently captures layout-contextualized group
representations and generates a final group rep-
resentation si optimized for downstream textual
analysis. A MLP-based linear classifier is attached
thereafter, and is trained to generate the group-level
category probability pic.

Different from previous work (Yang et al., 2020),
we restrict the variation in l1 and l2 such that we can
load pre-trained weights. Therefore, no additional
pre-training is required, and the H-VILA model
can be fine-tuned directly for the downstream clas-
sification task. Specifically, we set l1 = 1 and
initialize the group encoder from the first-layer
transformer weights of BERT. The page encoder is
configured as either a one-layer transformer or a 12-
layer transformer that resembles a full LayoutLM
model. Weights are initialized from the first-layer
or full 12 layers of the LayoutLM model, which
is trained to model texts in conjunction with their
positions.

Group Token Truncation As suggested in
Yang et al. (2020)’s work, when an input document
of length N is evenly split into segments of Ls,
the memory footprint of the hierarchical model is
O(l1NLs+ l2(

N
Ls

)2), and for long documents with
N � Ld, it approximates asO(N2/L2

s). However,



GROTOAP2 DocBank S2-VL

Train / Dev / Test Pages 834k / 18k / 18k 398k / 50k / 50k 1.3k1

Annotation Method Semi-Automatic Automatic Human Annotation
Paper Domain Life Science Math / Physics / CS 19 Domains
VILA Structure PDF parsing Vision model Gold Label / Detection methods
# of Categories 22 12 16

# Tokens Per Page 1203 / 591 / 23072 838 / 503/ 1553 790 / 453 / 1591
# Tokens Per Text Block 90 / 184 / 431 57 / 138 / 210 48 / 121 / 249
# Tokens Per Text Line 17 / 12 / 38 16 / 43 / 38 14 / 10 / 30
# Text Lines Per Page 90 / 51 / 171 60 / 34 / 125 64 / 54 / 154
# Text Blocks Per Page 12 / 16 / 37 15 / 8 / 30 22 / 36 / 68

1 This is the total number of pages in the S2-VL dataset; we use 5-fold cross-validation for training and testing.
2 For this and all following cells, we report the average / standard deviation / 95-th percentile value for this item.

Table 1: Distinct features for the three datasets in the S2-VLUE benchmark.

in our case, it is infeasible to adopt the Greedy Sen-
tence Filling technique (Yang et al., 2020) as it
will mingle signals from different groups and ob-
fuscate group structures. It’s also less desirable to
simply use the maximum token count per group
max1≤i≤m ni to batch the contents due to the high
variance of group token length (see Table 1). In-
stead, we choose a group token truncation count
ñ empirically based on key stats of the group to-
ken length distribution such that N ≈ ñm, and
use the first ñ to aggregate the group hidden vec-
tor hi for all groups. Therefore, H-VILA models
can achieve similar efficiency gains as seen in the
previous method (Yang et al., 2020).

4 Benchmark Suite

To systematically evaluate the proposed meth-
ods, we develop the the Semantic Scholar Visual
Layout-enhanced Scientific Text Understanding
Evaluation (S2-VLUE) benchmark suite. S2-
VLUE consists of three datasets—two previously
released resources augmented with VILA informa-
tion and a newly curated dataset S2-VL—as well as
evaluation metrics for measuring prediction quality.

4.1 Datasets

Key statistics for S2-VLUE are provided in Ta-
ble 1. Notably, the three constituent datasets differ
in regards to: 1) annotation method, 2) VILA gen-
eration method, and 3) paper domain coverage. We
provide details below.

GROTOAP2 The GROTOAP2 dataset (Tkaczyk
et al., 2014) is semi-automatically annotated. It
first creates text block and line groupings using
the CERMINE PDF parsing tool (Tkaczyk et al.,

2015); text block category labels are then obtained
by pairing block texts with structured data from
document source files obtained from PubMed Cen-
tral. A small subset of data is inspected by experts,
and a set of post-processing heuristics is developed
to further improve annotation quality. Since to-
ken categories are annotated by group, the dataset
achieves perfect accordance between token labels
and VILA structure. However, the method of rule-
based PDF parsing employed by the authors intro-
duces labeling inaccuracies due to imperfect VILA
detection: the authors find that block-level annota-
tion accuracy achieves only 92 Macro F1 in a small
gold evaluation set. Additionally, all samples are
extracted from the PMC Open Access Subset4 that
includes only life sciences publications; these pa-
pers have less representation of classification types
like “equation”, which are common in other scien-
tific disciplines.

DocBank The DocBank dataset (Li et al., 2020)
is fully machine-labeled without any postprocess-
ing heuristics or human assessment. The authors
first identify token categories by automatically pars-
ing the source TEX files available from arXiv. Text
block annotations are then generated by grouping
together tokens of the same category using con-
nected component analysis. However, only a spe-
cific set of token tags was extracted from the main
TEX file for each paper, leading to inaccurate and
incomplete token labels, especially for papers em-
ploying LaTeX macro commands,5 and thus in-

4https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
5For example, in DocBank, “Figure 1” in a figure caption

block is usually labeled as “paragraph” rather than “caption”.
DocBank labels all tokens that are not explicitly contained in
the set of processed LaTeX tags as “paragraph.”



correct visual groupings. Hence, we develop a
CNN-based vision layout detection model based
on a collection of existing resources (Zhong et al.,
2019; MFD, 2021; He et al., 2017; Shen et al.,
2021) to fix these inaccuracies and generate trust-
worthy VILA annotations at both the text block
and line level.6 As a result, this dataset can be
used to evaluate VILA models under a different
setting, since the VILA structures are generated
independently from the token annotations. Yet as
the papers are extracted from arXiv, they primarily
represent domains like Computer Science, Physics,
and Mathematics, limiting the amount of layout
variation; the automatic token classification pro-
cess also produces labels for only a small number
of semantic categories, which may be insufficient
for some paper modeling needs.

S2-VL S2-VL is created to address the three ma-
jor drawbacks in existing work: 1) annotation qual-
ity, 2) VILA creation, and 3) domain coverage.
S2-VL is developed with help from graduate stu-
dents who frequently read scientific papers. Using
the PAWLS annotation tool (Neumann et al., 2021),
annotators draw rectangular text blocks directly on
each PDF page, and specify the block-level seman-
tic categories from 16 possible candidates. Tokens
within a group can therefore inherit the category
from the parent text block. Inter-annotator agree-
ment, in terms of token-level accuracy measured on
a 12-paper subset, is high at 0.95. The ground-truth
VILA labels in S2-VL can be used to fine-tune vi-
sual layout detection models, and paper PDFs are
also included, making PDF-based structure pars-
ing feasible: this enables VILA annotations to be
created by different means, which is helpful for
benchmarking VILA-based models in different sce-
narios. Moreover, S2-VL currently contains 1337
pages of 87 papers from 19 different disciplines,
including Philosophy and Sociology that are not
present in previous data sets.

Overall, the datasets in S2-VLUE cover a wide
range of scientific disciplines with different layouts.
The VILA structures are curated differently, and
can be used to evaluate a variety of VILA-based
methods and assess their generalizability.

6The original generation method for DocBank requires
rendering LaTeX source, which results in layouts different
from the publicly available versions of these documents on
arXiv. However, because the authors of the dataset only pro-
vide document page images, rather than the rendered PDF, we
can only use image-based approaches for layout detection. We
refer readers to supplementary materials for details.

4.2 Metrics
Prediction Accuracy The token label dis-
tribution is heavily skewed towards cate-
gories indicating papers’ body texts (e.g., the
“BODY_CONTENT” category in GROTOAP2 or
the “paragraph” category in S2-VL and DocBank).
Therefore, we choose to use Macro F1 as the main
evaluation metric for prediction accuracy.

Group Category Inconsistency We also de-
velop a metric that calculates the uniformity of the
token categories within a group. Hypothetically,
tokens in T (i)

g share the same category c, and natu-
rally the group inherits the semantic label c. We use
the group token category entropy to measure the
inconsistency of the (predicted) token categories
within a group:

H(g) = −
∑
c

pc log pc, (3)

where pc denotes the probability of a token in group
g being classified as category c. When all tokens
in a group have the same category, the group token
category inconsistency is zero. H(g) reaches the
maximum when pc is a uniform distribution across
all possible categories. The inconsistency for G is
the arithmetic mean of all individual groups gi:

H(G) =
1

m

m∑
i

H(gi) (4)

H(G) acts as an auxiliary metric for evaluating pre-
diction quality with respect to the provided VILA
structures. In the remainder of this paper, we report
the inconsistency metric for text blocks G(B) and
scale the values up by a factor of 100.

5 Experiments

5.1 Experimental Setup
Implementation Details Our models are imple-
mented using PyTorch (Paszke et al., 2019) and the
transformers library (Wolf et al., 2020). A series
of baseline and VILA models are fine-tuned on 4-
GPU RTX8000 or A100 machines. The AdamW
optimizer (Kingma and Ba, 2014; Loshchilov and
Hutter, 2019) is adopted with a 5 × 10−5 learn-
ing rate and (β1, β2) = (0.9, 0.999). The learning
rate is linearly warmed up over 5% steps then lin-
early decayed. For different datasets (GROTOAP2,
DocBank, S2-VL), unless otherwise specified, we
select the best fine-tuning batch size (40, 40 and 12)



GROTOAP2 DocBank S2-VL

F1-macro � H(G)� F1-macro � H(G)� F1-macro � H(G)� Inference Time (ms)

Baseline LayoutLM 92.34 0.78 91.06 3.04 81.65(5.05)1 3.56(0.62) 52.56(0.25)

I-VILA
Sentence 91.83 0.78 91.44 3.03 82.03(4.20) 3.50(0.38) 54.09(0.37)

Text Line G(L) 92.37 0.73 92.79 2.59 82.87(3.95)2 3.22(0.53) 56.31(0.40)

Text Block G(B) 93.38 0.53 92.00 2.51 82.65(4.90) 2.51(0.44) 53.27(0.13)

H-VILA
Naïve 92.65 0.00 87.01 0.00 75.60(4.72) 0.38(0.17) 82.57(0.30)

Text Line G(L) 91.65 0.32 91.27 1.07 80.47(2.03) 2.62(0.70) 28.07(0.37)3

Text Block G(B) 92.37 0.00 87.78 0.00 76.06(4.66) 0.38(0.22) 16.37(0.15)

1 For S2-VL, we show the averaged scores and their standard deviation in the parentheses across the 5-fold cross validation subsets.
2 In this table, we report S2-VL results using VILA structures detected by visual layout models. When the ground-truth VILA structures are
available, both I-VILA and H-VILA models can achieve better accuracy, shown in Table 5 and 6.
3 When reporting efficiency in other parts of the paper, we use this result because of its optimal combination of accuracy and efficiency.

Table 2: Model Performance on the Three Benchmark Datasets. Models with layout indicator achieves better
accuracy, while hierarchical models achieves significant efficiency gain compared to the baseline methods.

and training epochs (24, 6,7 and 10) for all models.
As for S2-VL, given its smaller size, we use 5-fold
cross validation and report averaged scores, and
use 2× 10−5 learning rate with 20 epochs. Since
papers may have variable page numbers, we split
S2-VL based on papers rather than pages to avoid
exposing paper templates of test samples in the
training data. Mixed precision training (Micikevi-
cius et al., 2018) is used to speed up the training
process.

For I-VILA models, we fine-tune several BERT-
variants with VILA-enhanced text inputs, and the
models are initialized from pre-trained weights
available in the transformers library. The H-VILA
models are initialized as mentioned in Section 3.3,
and by default, positional information is injected
for each group.

Competing Methods We consider three ap-
proaches that compete with the proposed methods
from different perspectives: 1) The LayoutLM (Xu
et al., 2020b) model is the baseline method. It is the
closest model counterpart to our VILA-augmented
models as it also injects layout information, and
achieves previous SOTA performance on the Sci-
entific PDF parsing task (Li et al., 2020). 2)
For indicator-based methods, besides using VILA-
based indicators, we also compare with indica-
tors generated from sentence breaks detected by
PySBD (Sadvilkar and Neumann, 2020). 3) For
hierarchical models, we consider a naïve approach

7We try to keep gradient update steps the same for the
GROTOAP2 and the DocBank dataset. As DocBank con-
tains 4× examples, the number of DocBank models’ training
epochs is reduced by 75%.

where the group texts are separately fed into a
LayoutLM-based group token classifier. However,
despite the group texts being relatively short, this
method causes extra computational overhead as
the full LayoutLM model needs to be run m� 3
times for all groups.8 As such, we only consider
text block groupings in this case for efficiency, and
models are only trained for 5, 2, and 5 epochs for
GROTOAP2, DocBank, and S2-VL.

Measuring Efficiency We report the inference
time per sample as a measure of model efficiency.
We select 1,000 pages from the GROTOAP2 test
set, and report the average model runtime for 3 runs
on this subset. All models are tested on an isolated
machine with a single V100 GPU. We report the
time incurred for text classification; additional time
costs associated with PDF-to-text conversion or
VILA structure detection are not included.

5.2 Evaluation Results
Summarized in Table 2, VILA-based approaches
achieve better accuracy or efficiency under differ-
ent scenarios.

I-VILA models lead to consistent accuracy im-
provements when layout information is injected.
Compared to the baseline LayoutLM model, which
uses regular textual input, inserting layout indica-
tors results in +1.1%, +1.9%, and +1.5% Macro F1
improvements across the three benchmark datasets.
I-VILA models also achieve better token prediction

8Using GROTOAP2 as an example (see Table 1), there
is an average of 12 text blocks per page and m ≈ 12. With
an average of 1203 tokens per page, the inputs must be split
into three 512-length segments that are separately provided as
inputs into the LayoutLM model.



Base Model I-VILA F1-marco � H(G) �

DistilBERT

None 90.52 1.95

Text Line 91.14 1.33

Text Block 92.12 0.73

BERT

None 90.78 1.58

Text Line 91.65 1.13

Text Block 92.31 0.63

LayoutLM

None 92.34 0.78

Text Line 92.37 0.73

Text Block 93.38 0.53

Table 3: Inserting VILA indicator tokens leads to con-
sistent improvements on different BERT-based models.

consistency; the corresponding group category in-
consistency is reduced by 32.1%, 14.8%, and 9.6%
compared to baseline. Moreover, VILA informa-
tion is also more helpful than language structures:
I-VILA models based on text blocks and lines all
outperform the sentence boundary-based method
by a similar margin. Figure 2 shows an example of
the VILA model predictions.

H-VILA models, on the other hand, lead to sig-
nificant efficiency improvements. In Table 2, we
report results for H-VILA models with l1 = 1 and
l2 = 12. As block-level models perform predic-
tion directly at the text block level, the group cate-
gory inconsistency is naturally zero. Compared to
LayoutLM, H-VILA models with text lines brings
46.59% reduction in the inference time, while the
final prediction accuracy is not heavily penalized
(-0.74%, +0.23%, -1.45% Macro F1). When text
blocks are used, H-VILA models are even more effi-
cient (68.85% and 80.17% inference time reduction
compared to the LayoutLM and naïve baseline),
and they also achieves better accuracy compared
to the naïve counterparts (-0.30%, 0.88%, 0.61%
Macro F1).

However, in H-VILA models, the inductive bias
from the group uniformity assumption is a double-
edged sword: models are often less accurate than
I-VILA counterparts, and performing block level
classification may sometimes lead to worse results
(-3.6% and -6.8% Macro F1 in the DocBank and
S2-VL datasets compared to LayoutLM). Shown in
Figure 3, when text block detection is incorrect, the
H-VILA method lacks the flexibility to assign dif-
ferent token categories within a group, which can
lead to lower accuracy. Text lines contain shorter

Figure 3: Different from Figure 2, here we show mod-
els trained and evaluated with “inconsistent” text block
detections. The blocks are created by the CERMINE
PDF parsing program (Tkaczyk et al., 2015), which (1)
fails to capture the correct table structure and (2) does
not separate body text contents into different blocks.
Though VILA-based models utilize the group structure
to increase the block uniformity, overall prediction ac-
curacy is hurt due to the inconsistent block signal.

token sequences than blocks, and the empirical risk
of erroneous predictions are consequently lower.
Additional analysis of the two different H-VILA
models and VILA signals is detailed in Section 6.

5.3 I-VILA on different BERT variants

We also apply I-VILA to different BERT variants
on the GROTOAP2 dataset, and show that the
method leads to consistent improvements for all
model variants in Table 3. For BERT and Dis-
tilBERT (Sanh et al., 2019), 2D coordinates for
layout indicator tokens are not injected. Yet we
still observe consistent improvements (+1.68% and
+1.76% Macro F1) compared to non-VILA coun-
terparts, showing that VILA structural information
can be used separately from positional information.
Moreover, I-VILA + BERT has nearly identical
performance as LayoutLM. This further verifies
that injecting layout indicator tokens is a novel and
effective way of incorporating layout information
into language models.

5.4 Ablating the Optimal Configurations for
H-VILA

Next we analyze different architectures of the H-
VILA models using the GROTOAP2 dataset. By
varying the transformer layers l2 in the page en-



Text Line Text Block

l2 Use 2D Position F1-macro H(G) Inference Time F1 macro H(G) Inference Time

1
7 89.77 1.73 24.23(0.06) 91.93 0.00 15.90(0.19)

3 91.30 1.17 24.47(0.45) 91.89 0.00 16.05(0.28)

12
7 91.07 0.63 27.60(0.11) 92.14 0.00 16.65(0.09)

3 91.65 0.32 28.07(0.37) 92.37? 0.00 16.37(0.15)

Table 4: Model performances for different H-VILA architectures.

coder, we aim to find the best configurations with
an optimal balance between accuracy and effi-
ciency. We also investigate the importance of 2D
group positions by experimenting with only using
the textual representation h̃i in the page encoders.
Results are presented in Table 4.

As mentioned previously, we experiment with
l2 ∈ {1, 12} in order to take advantage of exist-
ing pre-trained BERT weights. Interestingly, even
with only a two layer structure (when l2 = 1),
the model can capture sufficient semantic informa-
tion, and generate predictions with good accuracy.
This formulation brings considerable efficiency im-
provements, with the most accurate model (marked
with ? in the table) beating the baseline LayoutLM
by 68% in terms of efficiency, let alone the naïve
baseline (80%). This model also outperforms the
baseline DistilBERT model with 90.52 Macro F1
and 26.48 ms Inference Time.

We observe consistent improvements when 2D
positional information is injected into the group
representations. Models are able to leverage both
structure and positional information to generate pre-
dictions of better accuracy and consistency: when
text lines are used, modeling with groups’ 2D posi-
tions leads to lower group category inconsistency.

6 Discussion

Though we treat text lines and blocks (almost) in-
terchangeably in the previous sections, using G(B)

and G(L) may lead to different modeling outcomes.
In this section, we try to answer questions about
1) which grouping level is preferred and 2) what
is the best way to obtain these groupings. We start
with a careful analysis of the definition of the text
“blocks” and “lines”, and identify possible issues
in text blocks that might violate the group token
uniformity assumption. Additional experiments are
implemented where we compare different group
detection methods on the S2-VL dataset, and draw
conclusions that might be helpful for practical use.

I-VILA H-VILA

G(B) Source F1-macro H(G) F1-macro H(G)

Ground-Truth 86.09(4.76) 1.90(0.46) 79.32(3.65) 0.45(0.28)

PDF Parsing 81.88(5.18) 3.67(0.87) 75.17(4.10) 0.02(0.01)

Vision Model 82.65(4.90) 2.51(0.44) 76.06(4.66) 0.38(0.22)

Table 5: Model performances when using different
G(B) for training and evaluation on the S2-VL dataset.

I-VILA H-VILA

G(L) Source F1-macro H(G) F1-macro H(G)

PDF Parsing 82.40(4.58) 3.38(0.77) 78.88(3.89) 2.52(0.62)

Vision Model 82.87(3.95) 3.22(0.53) 80.47(2.03) 2.62(0.70)

Table 6: Model performances when using different
G(L) for training and evaluation on the S2-VL dataset.

6.1 Text Blocks vs. Text Line
Text lines are well-studied in layout analysis, partly
because of the relatively unambiguous definition:
consecutive texts appearing at the same vertical
position9 are considered as a text line. Text blocks,
however, are less well-defined and the may vary in
different contexts. For example, section headers
and paragraphs are labeled in separate text blocks
in some cases (Zhong et al., 2019)), while they
are merged as a single text block in other cases
due to their spatial proximity on the page (Tkaczyk
et al., 2015). If block detection is inconsistent
with the token semantic schema (e.g., when the
model is required to differentiate section headers
and paragraph texts yet they are included in the
same text block), the block signal might be less
helpful or even hurt VILA-based models.

6.2 S2-VL with Different Group Detectors
To verify this idea, we investigate different G(B)

derived via PDF parsing (Tkaczyk et al., 2015) or
vision model detection (He et al., 2017) for the S2-
VL dataset. We train and evaluate our models on

9or horizontal position when the text are written vertically.
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Figure 4: Few-shot learning experiments on the S2-VL
dataset with the ground-truth text block annotations.

these data variants, and report the performance in
Table 5. As shown in Figure 3, the PDF parsing
engine’s block detection is inconsistent with our
token labeling schema, and the detected blocks
usually contain tokens of different categories. I-
VILA models record less accuracy improvements
in this case, and H-VILA methods are penalized
heavily as they, by design, can only generate the
same category prediction for all tokens in the same
group.

We also vary the text line detection methods, re-
train the models, and report performance in Table 6.
Similarly, the vision model yields better line detec-
tion results, and thus leads to better performance in
the VILA-based models.

We conclude with some practical suggestions for
using VILA-based methods.

1. When consistent text blocks are available,
G(B) is preferred as it can lead to better accu-
racy and efficiency gains. Equivalently, when
creating new datasets, it is ideal to design the
token labeling schema to align with the block
detection method.

2. Otherwise, using G(L) or I-VILA is a viable
option that can lead to consistent modeling
improvements.

3. Despite being more computationally expen-
sive, using a vision detection model can lead
to more robust accuracy improvements.

6.3 Few-shot Experiments on S2-VL

Finally, we show that I-VILA methods can help
with model training and improve sample efficiency
when the perfect text block information is given.
We conduct few-shot learning experiments on the
S2-VL dataset, training models using samples from

5, 10, 15, 25, and 45 papers. Similar to previ-
ous settings, 5-fold cross validation is applied to
each few-shot experiment, and train-test splits are
held constant while varying training sample size.
Equipped with text block indicators, I-VILA mod-
els trained on a 15-paper subset can outperform
the baseline LayoutLM model trained on the full
dataset of 70 papers. However, the text line based I-
VILA models lead to relatively less improvements
compared to the text block based counterpart. This
difference could be explained by the distinct text
block and line count per page (Table 1). With
50% more text lines on a page, the special token
is injected into the inputs more frequently. This
can cause a bigger difference in the text structure
than what the models are pre-trained on, and the
frequent appearance of such tokens may diminish
their relative importance.

7 Conclusion

In this paper, we introduce two new ways to in-
tegrate Visual Layout (VILA) structures into the
NLP pipeline for analyzing scientific documents.
We show that inserting special indicator tokens
based on VILA (I-VILA) can lead to robust im-
provements in token classification accuracy (up
to +1.9% Macro F1) and consistency (up to -32%
group category inconsistency). In addition, we
design a hierarchical transformer model based on
VILA (H-VILA), which can reduce inference time
by 46% with less than 1.5% Macro F1 reduction
compared to previous SOTA methods. We release
a benchmark suite, along with a newly curated
dataset S2-VL, to systematically evaluate the pro-
posed methods. We ablate the influence of differ-
ent visual layout detectors on VILA-based mod-
els, and provide suggestions for practical use. Our
study is well-aligned with the recent exploration
of injecting structure into language models, and
provides new perspectives on how to incorporate
visual structures.
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