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Abstract

Multi-document summarization (MDS) has
traditionally been studied assuming a set of
ground-truth topic-related input documents is
provided. In practice, the input document set
is unlikely to be available a priori and would
need to be retrieved based on an information
need, a setting we call open-domain MDS.
We experiment with current state-of-the-art re-
trieval and summarization models on several
popular MDS datasets extended to the open-
domain setting. We find that existing summa-
rizers suffer large reductions in performance
when applied as-is to this more realistic task,
though training summarizers with retrieved in-
puts can reduce their sensitivity retrieval er-
rors. To further probe these findings, we con-
duct perturbation experiments on summarizer
inputs to study the impact of different types
of document retrieval errors. Based on our re-
sults, we provide practical guidelines to help
facilitate a shift to open-domain MDS. We re-
lease our code and experimental results along-
side all data or model artifacts created during
our investigation.1

1 Introduction

Summarization is a popular task in natural language
processing (NLP) that aims to automatically gener-
ate accurate and concise summaries for some given
input text. Multi-document summarization (MDS)
extends this task to provide multiple topic-related
documents as input, where the goal is to summarize
the salient information while avoiding redundancy.
MDS has become a popular research objective with
many proposed approaches (Yasunaga et al., 2017;
Liao et al., 2018; Liu and Lapata, 2019; Li et al.,
2020; Jin et al., 2020; Mao et al., 2020; Zhang
et al., 2020a; Pasunuru et al., 2021b; Xiao et al.,

∗Work performed during internship at AI2
†Core contributors. See authors contributions

1https://github.com/allenai/open-mds

Figure 1: Prior work assumes a ground-truth input doc-
ument set is given at train and test time (“traditional
MDS”). We investigate how summarizers behave under
the more realistic “open-domain” setting where docu-
ments must be retrieved given an information need.

2022) and has found important applications in sum-
marizing clusters of news articles (Fabbri et al.,
2019; Gholipour Ghalandari et al., 2020), scientific
literature (Lu et al., 2020), medical studies (Wal-
lace et al., 2021; DeYoung et al., 2021), and legal
documents (Shen et al., 2022).

Previous task definitions for MDS assume a
ground-truth input document set is provided at
both train and test time. However, this is an ar-
tifact of the dataset curation process; in practice,
the input document set is unlikely to be available
a priori. In many practical settings, the document
set would be defined by an information need, ex-
pressed as a query. The query could be a ques-
tion, e.g., “Do vitamin D supplements improve the
physical capabilities of elderly hospital patients?”
or topic statement, e.g. “Report on vulnerabili-
ties of the US power/electrical grid and efforts to
change or improve it.” Documents relevant to the
query would then need to be retrieved from a larger
collection (an index) and summarized (Figure 1).
Because even state-of-the-art information retrieval
(IR) methods are imperfect, errors, like the retrieval
of irrelevant documents, will occur. It is an open
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question how existing summarizers behave under
this more realistic “open-domain”2 setting.

Here, we lay the groundwork for a shift in fo-
cus to open-domain MDS. We begin by provid-
ing a formal task definition and highlighting a
particularly promising approach: “retrieve-then-
summarize” (§2). Our major contributions are:

• We study open-domain MDS by bootstrapping
the task with existing MDS datasets, state-of-the-
art retrievers and summarizers (§4).

• We find that summarizers suffer large perfor-
mance reductions in the open-domain setting,
even when retrieval performance is high (§5);
training with retrieved inputs can reduce this sen-
sitivity to imperfect document retrieval (§6).

• We probe what drives this reduction in summa-
rization performance by subjecting summarizers
to an extensive suite of “perturbations” designed
to simulate document retrieval errors (§7).

Based on our results, we provide detailed, practical
guidelines for future work in MDS. We release our
code and experimental results alongside all data or
model artifacts created during our investigation.

2 Open-domain MDS

In the traditional MDS task definition, a model
is given a set of topic-related input documents
D = {d1, ..., dk} and must generate a summary S
that accurately and coherently summarizes the in-
formation in D. Such models are typically trained
in a supervised fashion to minimize the difference
between S and a (usually human-written) reference
summary R. The goals (and evaluation) remain the
same in open-domain MDS, but instead of D, the
inputs are a query q and a large collection (index) of
documents Dindex, where the size of Dindex is� k
(Figure 1). The specifics of q,Dindex, and S will de-
pend on the application. For example, in automatic
literature review (Wallace et al., 2021; DeYoung
et al., 2021), q would be a research question or state-
ment, e.g. “Is massage therapy effective for people
with musculoskeletal disorders compared to any
other treatment or no treatment?”, Dindex would be
a large corpus of scientific literature (e.g. PubMed),
and S would be a literature review-style discussion,
e.g. “Massage therapy, as a stand-alone treatment,

2We are borrowing this term from the question answering
literature, which also uses it to denote the setting where only
a query is provided as input

reduces pain and improves function compared to
no treatment in some musculoskeletal conditions.”3

There are multiple ways to approach open-
domain MDS. One possibility is to think of q as
a prompt to a large language model (LLM) capa-
ble of in-context learning (Brown et al., 2020) to
generate S; in which case we can think of Dindex as
the LLMs training data and retrieval as happening
implicitly during inference. However, because all
information is stored in the model’s weights, this
approach requires extremely large models, cannot
produce summaries for events that do not appear in
the training data, and does not provide provenance
for the model-generated summaries.

Another approach is to introduce an explicit re-
trieval step over an external knowledge source,
which we refer to as “retrieve-then-summarize.”4

It works as follows: a retriever must rank all docu-
ments in Dindex from most-to-least relevant given
q. The top-k documents are then input to a summa-
rizer, where k is a parameter that may be tuned for
a particular use case. This approach has some desir-
able properties: (1)Dindex can be updated with new
documents (e.g. the latest scientific articles) with-
out the need to re-train the retriever or summarizer,
and (2) it naturally provides provenance for model-
generated summaries: the top-k documents. In the
remainder of the paper, we focus our investigation
on the retrieve-then-summarize approach.

3 Research Questions

Our experiments are designed to probe the follow-
ing research questions:

• R1: How do state-of-the-art retrievers and sum-
marizers perform in the open-MDS setting?

• R2: Does training in the open-domain setting
make multi-document summarizers less sensitive
to imperfect document retrieval?

• R3: What types of retrieval errors occur in the
open-domain setting? How does each error type
affect summarization performance?

The rest of the paper is structured as follows. In
§4, we describe the experimental design. The re-
maining sections present our experimental results
as they relate to R1 (§5), R2 (§6), and R3 (§7).

3Truncated example from MSˆ2 (DeYoung et al., 2021)
4Inspired by the “retrieve-then-generate” approach popular

in knowledge-intensive NLP (Petroni et al., 2021)



Table 1: Dataset statistics, counting whitespace tokens and punctuation. *Following (DeYoung et al., 2021), we
take the first 25 documents as input (full statistics in parentheses). †Multi-XScience and MSˆ2 each have inputs that
are always provided (and never retrieved), the target articles abstract and the target reviews background section.

Dataset Domain Max Docs Mean Docs Avg. Tokens/Input Document Avg. Tokens/Reference Summary

Multi-News News Articles 10 2.7 788 267
WCEP-10 News Articles 10 9.1 494 33
Multi-XScience† Scientific Literature 20 4.1 153 125
MSˆ2*† Medical Studies 25 (401) 17 (23) 332 58
Cochrane* Medical Studies 25 (537) 9 (11) 266 69

Table 2: Evaluated multi-document summarizers and
the datasets for which a fine-tuned model is publicly
available (or was trained by us).

Model Fine-tuned on Max Input Len. Zero-shot?

LED MSˆ2, Cochrane 16384 7

PEGASUS Multi-News 1024 7

PRIMERA
Multi-News, WCEP-10,

Multi-XScience
4096 3

LSG-BART Multi-News, WCEP-10 4096 7

4 Bootstrapping Open-domain MDS

Since no large-scale annotated datasets or trained
models exist for open-domain MDS, we bootstrap
this task using existing datasets (§4.1) and models
(§4.2, §4.3). We describe operationalization con-
siderations in §4.4 and evaluation metrics in §4.5.
We use MDS datasets for which high-performing
summarizers exist and whose examples are anno-
tated with ground-truth input documents (D) and
human-written reference summaries (R).

4.1 Datasets
We investigate a representative selection of 5 MDS
datasets comprised of news articles, medical stud-
ies, and scientific literature. Dataset statistics are
listed in Table 1. The inputs of these datasets gen-
erally consist only of the documents to summarize.
However, Multi-XScience and MSˆ2 each provide
additional text as input — the target article’s ab-
stract and the target review’s background section,
respectively. In our experiments, we always pro-
vide this additional text (and do not retrieve it).5

4.2 Retrieval Models
Broadly speaking, retrievers are divided into two
categories, sparse and dense. Sparse retrievers de-
termine the relevance of a document to a query
using counts of overlapping terms weighted by
their frequencies. Dense retrievers embed docu-
ments and queries into a shared embedding space

5See Appendix A for more details

(typically using neural language models) and use
proximity in this space to determine relevance. Re-
trievers from these families exhibit different charac-
teristics and limitations (MacAvaney et al., 2022).
We investigate two representative retrievers, one
from each family: BM25 (sparse, Robertson et al.
1994) and Contriver (dense, Izacard et al. 2022a).6

Both BM25 and Contriever achieve strong zero-
shot performance for a variety of retrieval tasks,7

making them particularly suitable for our purposes.

4.3 Multi-document Summarization Models
All multi-document summarizers we experi-
ment with are transformer-based encoder-decoders
(Vaswani et al., 2017) trained for abstractive sum-
marization, representing the current state-of-the-art
approach. The input is a string containing one or
more documents concatenated with special tokens
(e.g. <doc-sep>). Following Xiao et al. (2022),
we truncate each document based on the maximum
input length of the model divided by the total num-
ber of documents. The models are listed in Table 2.
Where available, we use publicly available fine-
tuned copies of these models; in the case of MSˆ2
and Cochrane, we fine-tune a model ourselves.8

4.4 Operationalizing
Retrieve-then-Summarize

To extend these datasets and models to the open-
domain setting and operationalize the retrieve-then-
summarize approach, we address the following:

How to choose a query? In open-domain MDS,
a query is anything that defines the documents to
summarize (e.g. a question or topic statement).
Ideally, a human-written query would be available
for each example in our dataset. However, existing
MDS datasets do not provide queries.9 Therefore,

6See Appendix B for more details
7See the BEIR (Thakur et al., 2021) zero-shot benchmark
8See Appendix C for more details
9Although query-focused MDS datasets exist, they are ex-

tremely small (on the scale of 10s of examples) and are there-

https://docs.google.com/spreadsheets/d/1L8aACyPaXrL8iEelJLGqlMqXKPX2oSP_R10pZoy77Ns/edit?usp=sharing


we use R, the human-written reference summaries,
as a pseudo-query,10 as it naturally describes the
input documents of each example.

How to assemble the document index? For our
purposes, we take the set of all documents in the
train, validation, and test splits of each dataset to
form Dindex. This guarantees that the correct doc-
uments for each example are present in the index
while providing plenty of negative examples.

How many documents to summarize? The
number of retrieved documents to summarize, k,
is a parameter that can be tuned for different use
cases. To determine its impact on summarization
performance, we investigate three strategies:

• Max: Choose k as the maximum number of input
documents for any example in a given dataset.
Tends to select for recall at the cost of precision.

• Mean: Choose k as the mean number of input
documents for all examples in a given dataset.
Tends to select for precision at the cost of recall.

• Oracle Choose k as the ground-truth number
of input documents for any example in a given
dataset. This mimics the scenario where all doc-
uments with a relevance score (assigned by the
retriever) above a certain optimal threshold (a
hyperparameter) are retained.

We note that these decisions result in a highly ide-
alized setting. Using R as query leaks information
about the reference summary into the retrieval step
and likely inflates summarization performance. In
practice, Dindex will be much larger (e.g. PubMed-,
Wikipedia-, or even Web-scale), making retrieval
more difficult. However, as we will show in §5,
even this idealized setting often leads to large re-
ductions in summarization performance.

4.5 Evaluation
We follow previous work by evaluating summariza-
tion with ROUGE-1, ROUGE-2, and ROUGE-L
scores (Lin, 2004). To provide a single metric for
comparison, we report ROUGE-Avg F1, the av-
erage F1-score of ROUGE-1/2/L. We also report
BERTScore (Zhang et al., 2020b), which has been
shown to better correlate with human judgment
(Yuan et al., 2021; Fischer et al., 2022).11 These

fore not suitable for the large-scale analysis we are proposing
10Except for MSˆ2, where we found the provided “back-

ground” section to perform better as a query. See §4.1.
11BERTScore has many parameters which affect the final

score. For reproducibility, a hashcode is produced. Our

automatic summarization metrics output a score
by comparing a model-generated summary to a
reference summary. For document retrieval per-
formance, we report the precision and recall at k
(abbreviated P@K and R@K). P@K is the frac-
tion of the top-k retrieved documents considered
relevant, and R@K is the fraction of known rel-
evant documents appearing in the top-k retrieved
results. These are suitable metrics when the in-
put documents do not have an inherent order, as is
usually the case in MDS and is true for the MDS
datasets we investigate. We evaluate both retrievers
and summarizers on the test splits of each dataset,
except for MSˆ2 and Cochrane, where we evaluate
on the validation set because the test split is blind.

5 Multi-Document Summarizers Do Not
Generalize to the Open-Domain Setting

Here we present the results of our open-domain
MDS experiments. In general, we find that ex-
isting summarizers suffer large reductions in per-
formance when applied as-is to the open-domain
setting, even when retrieval performance is high
(Table 3).12 Below, we provide key observations on
how the individual components (summarizer and
retriever) behave within a retrieve-then-summarize
framework, particularly how their individual per-
formances relate to overall system performance.

Strong summarizers are more sensitive to im-
perfect retrieval than weak summarizers We
observe a relationship between a summarizer’s
(baseline) performance on a dataset and its sensitiv-
ity to imperfect document retrieval (Table 3). The
largest reductions in summarization performance
were observed for the most performant summariz-
ers (and vice versa), despite retrieval performance
being the highest in these cases. However, this
relationship is confounded by differences in re-
trieval performance between datasets. To control
for this, we conduct experiments comparing fine-
tuned PRIMERA to PRIMERA evaluated zero-shot
(Table 4).13 This allows us to hold the dataset,
model architecture, and retriever constant, isolat-
ing the relationship between summarization perfor-

hashcode is: microsoft/deberta-xlarge-mnli_
L40_no-idf_version=0.3.11(hug_trans=4.22.
0.dev0)-rescaled_fast-tokenize.

12Results for sparse and dense retrievers were comparable
and exhibited similar trends. We elect to show results for the
sparse retriever. See Appendix D for dense retriever results.

13We choose PRIMERA as it is the only model we evaluate
with demonstrated zero-shot capabilities



Table 3: Results of the open-domain MDS experiments. We observe: (1) retrieval performance ranges from high
(Multi-News, WCEP-10) (dark blue) to low (Multi-XScience, MSˆ2, Cochrane), (2) when summarizers trained
on these datasets are provided retrieved documents, they suffer from significant drops in performance (dark red);
more severe performance drops were observed in cases where baseline summarization performance was relatively
high (dark green). Experiments here used a sparse retriever (BM25); similar results were observed using a dense
retriever (Contriever, see Table 8). Statistically significant results are underlined (paired t-test, p = 0.01).

Retrieval Summarization

Dataset Model Top-k Strategy P@K R@K ROUGE-Avg F1 ∆ ROUGE-Avg F1 BERTScore F1 ∆ BERTScore F1

Multi-News PRIMERA max (10) 0.22 0.82 31.66 -7.39 31.78 -10.33
mean (3) 0.64 0.74 – -2.82 – -4.08

oracle 0.75 0.75 – -1.61 – -2.36
PEGASUS max – – 31.23 -8.49 29.88 -10.87

mean – – – -2.08 – -2.93
oracle – – – -1.15 – -1.50

WCEP-10 PRIMERA max (10) 0.63 0.67 35.50 -1.02 48.26 -0.76
mean (9) 0.66 0.64 – -0.90 – -0.68

oracle 0.67 0.67 – -0.53 – -0.32
LSG-BART-base max – – 35.76 -1.15 48.17 -0.85

mean – – – -1.19 – -0.84
oracle – – – -0.88 – -0.54

Multi-XScience PRIMERA max (20) 0.06 0.40 18.31 -0.57 10.57 -1.82
mean (4) 0.16 0.27 – -0.25 – -1.27

oracle 0.23 0.23 – -0.06 – -0.97
MSˆ2 LED-base max (25) 0.16 0.22 19.66 -0.14 22.74 -0.47

mean (17) 0.18 0.18 – -0.10 – -0.13
oracle 0.18 0.18 – -0.01 – -0.21

Cochrane LED-base max (25) 0.17 0.57 17.39 -0.28 23.12 -2.11
mean (9) 0.31 0.44 – +0.34 – -0.32

oracle 0.40 0.40 – +0.10 – +0.00

Table 4: Results of the open-domain MDS experiments with zero-shot summarizers. Controls for differences in
datasets & models, isolating the relationship between summarization performance in traditional and open-domain
settings. Top-k strategy mean is used. Statistically significant results are underlined (paired t-test, p = 0.01).

Retrieval Summarization

Dataset Model Retriever P@K R@K ROUGE-Avg F1 ∆ ROUGE-Avg F1 BERTScore F1 ∆ BERTScore F1

Multi-News PRIMERA sparse (BM25) 0.64 0.74 31.66 -2.82 31.78 -4.08
dense (Contriever) 0.59 0.70 – -3.31 – -4.60

↪→ zero-shot sparse – – 23.58 -0.09 18.66 -0.39
dense – – – -0.27 – -0.44

WCEP-10 PRIMERA sparse 0.66 0.64 35.50 -0.90 48.26 -0.68
dense 0.66 0.63 – -0.14 – +0.68

↪→ zero-shot sparse – – 21.43 +0.35 25.48 +0.72
dense – – – +1.00 – +2.19

Multi-XScience PRIMERA sparse 0.16 0.27 18.31 -0.25 10.57 -1.27
dense 0.16 0.24 – -0.81 – -0.96

↪→ zero-shot sparse – – 15.18 +0.69 6.02 -0.47
dense – – – +0.46 – +0.00

mance in the traditional and open-domain settings.
Here, the trend is clear: stronger summarizers are
more sensitive to imperfect retrieval than weaker
summarizers.14

One explanation is that weak summarizers have
less to lose from imperfect retrieval, perhaps be-
cause they are not adequately performing the task
even when trained on ground-truth input docu-
ments. They may, to a greater degree than strong
summarizers: hallucinate (generate coherent but
irrelevant text), rely on shallow heuristics (Kryscin-
ski et al., 2019), or use only a fraction of input

14We use “strong” and “weak” as shorthand to refer to cases
where summarization performance is high (e.g. PRIMERA on
Multi-News) and low (e.g. LED on Cochrane)

documents (Wolhandler et al., 2022). To probe
this hypothesis, we construct several heuristic base-
lines that mimic these behaviours and compare
their performance to trained models (Table 5; see
Appendix E for more details). We find that, for
example, copying the provided background section
of MSˆ2 performs comparably to the fine-tuned
summarizer, suggesting that the observed insensi-
tivity to retrieval errors could be due to the sum-
marizer exploiting this heuristic. We observe a
similar result for Multi-XScience by copying the
document with the highest token overlap to the ref-
erence summary. Future work should carefully es-
tablish that summarizers are performing adequately
— via extensive evaluation and comparison to base-



Table 5: Comparing ROUGE-Avg F1 scores of model-generated summaries to heuristic baselines. In some cases,
the baselines perform surprisingly close to trained summarizers. All Lead is the concatenation of the first sentence
from each input document. Oracle document is the document with the highest token overlap with the reference
summary; oracle lead is the first sentence from this document. Background/Abstract is the additional input from
MSˆ2 and Multi-XScience. The best baseline for each dataset is bolded.

Baselines

Dataset Best Summarizer ∆ Random Summary ∆ All Lead ∆ Oracle Document ∆ Oracle Lead ∆ Background/Abstract

Multi-News 31.7 -18.3 -15.3 -4.1 -21.8 –
WCEP-10 35.8 -27.8 -24.4 -15.3 -9.9 –
Multi-XScience 18.3 -6.2 -5.0 -0.8 -9.3 -2.3
MSˆ2 19.7 -10.4 -11.0 -7.6 -4.0 -0.2
Cochrane 17.4 -5.0 -4.2 -3.9 -3.5 –

lines — before attempting the more challenging
open-domain setting.

Better retrieval performance does not always
correspond with better summarization perfor-
mance The performance of the sparse (BM25)
and dense (Contriever) retrievers was compara-
ble (Table 3 & Table 8), with the sparse retriever
performing better on some datasets (i.e. Multi-
News, WCEP-10, Multi-XScience) and the dense
retriever performing better on others (i.e. MSˆ2,
Cochrane). Both retrievers made a comparable
number of errors (see Appendix G). Interestingly,
however, better retrieval performance does not al-
ways correspond with a smaller impact on summa-
rization performance. For example, on WCEP-10,
the sparse retriever performed slightly better, but
the reduction in summarization performance was
considerably larger. On MSˆ2 and Cochrane, the
better-performing dense retriever leads to a larger
reduction in summarization performance. This sug-
gests that the two types of retrievers are making
characteristically different errors, which has been
noted in the literature (MacAvaney et al., 2022).
Therefore, future work should not rely solely on
IR metrics when optimizing retrieval pipelines for
open-domain MDS but should also consider the
impact on summarization performance directly.

The number of retrieved documents to summa-
rize matters We observe clear differences in the
strategy for choosing k, the number of retrieved
documents to summarize. Unsurprisingly, the ora-
cle strategy almost always leads to the smallest
reduction in summarization performance. This
strategy closely mimics the setting of retaining all
documents with a relevance score (assigned by the
retriever) over a certain threshold but assumes both
a strong retriever and a well-calibrated threshold,
both of which may be difficult to achieve in prac-

tice. Our results suggest that setting k as the mean
number of relevant documents (if an accurate esti-
mate can be produced) is a reasonable second-best
strategy. We note that, relative to the max k strat-
egy, mean k tends to select for precision over recall
(see P@K vs. R@K scores in Table 3 & Table 8);
future work should consider tuning k for precision
to maximize summarization performance.

6 Training in the Open-domain Setting
Reduces Sensitivity to Retrieval Errors

A natural question is whether a summarizer’s ro-
bustness to document retrieval errors at test time
might be improved by exposing the model to simi-
lar errors at train time. To explore this, we retrieve
the documents for all examples in the train split
of each dataset and fine-tune the best-performing
summarizers on these examples. We then evalu-
ate them on both the retrieved evaluation set and
the original (ground-truth) evaluation set.15 We
find cases where summarization performance in the
open-domain setting benefits from the additional
training (e.g. Multi-XScience, Figure 2); however,
this can come at the cost of performance on the
ground-truth evaluation set (e.g. Multi-News). We
note again that our retrieval setting is highly ide-
alized. In practice, the document index would be
much larger (making retrieval more difficult), and
we would not have access to the reference sum-
maries as queries. Nonetheless, our results suggest
that existing summarizers can be adapted to the
open-domain setting if query-annotated examples
and appropriate document indices are available.



Figure 2: Fine-tuning existing summarizers in the open-
domain setting. The additional training can reduce sen-
sitivity to imperfect retrieval but often comes at the cost
of performance on the ground-truth evaluation set. The
dashed grey line represents no change in performance.

7 A Deep Dive into the Effects of
Document Retrieval Errors on MDS

In this section, we investigate what is driving the re-
duction in summarization performance observed in
§5. We begin by carefully categorizing the various
retrieval errors that can occur in the open-domain
setting. For example, we can erroneously retrieve
documents irrelevant to the query or fail to retrieve
relevant documents. For each error type, we design
a corresponding “perturbation” that can be applied
to the inputs of existing MDS datasets before they
are fed to a summarizer. The perturbations are de-
scribed below and depicted graphically in Figure 3:

• Addition: Add one or more irrelevant docu-
ments, i.e. if Dactual is the ground-truth input
document set and kactual its size and Dperturbed is
the perturbed document set and kperturbed its size,
then Dactual ⊆ Dperturbed and kactual < kperturbed.
This could occur if we correctly retrieve all rele-
vant documents but also retrieve irrelevant ones.

• Deletion: Remove one or more documents, i.e.
Dactual ⊇ Dperturbed and kactual > kperturbed. This
could occur if we retrieve only a fraction of all
relevant documents.

• Replacement: Replace one or more rele-
vant documents with irrelevant documents, i.e.
Dactual 6= Dperturbed and kactual = kperturbed. This
could occur if we retrieve the correct number of
15See Appendix F for details

documents but substitute a relevant document for
an irrelevant one.

• Duplication: Duplicate one or more documents,
This could occur if duplicate (or, more likely,
near-duplicate) documents exist in the index.16

• Sorting: Shuffle the order of the input documents.
The input documents for MDS tasks are typically
unordered. However, many summarizers con-
catenate documents before passing them as input
to the model, and it is unknown if models are sen-
sitive to this ordering. Different orderings could
occur, for example, if documents are sorted by
order of relevance before concatenating.

Token-level perturbations It is well known that
NLP models are sensitive to minor token-level
changes in their inputs (Prabhakaran et al., 2019;
Niu et al., 2020; Ribeiro et al., 2020; Moradi
and Samwald, 2021). To compare and contrast
the document-level sensitivity we are investigat-
ing with this known token-level sensitivity, we in-
clude a token-level perturbation, backtranslation.
In backtranslation (also called “round-trip transla-
tion”), we translate one or more input documents to
another (high-resource) language and back again.
This process causes small changes, e.g. paraphras-
ing and synonym substitution, allowing us to create
many semantics-preserving, token-level changes to
a document. See Appendix H for more details.

7.1 Selecting Documents to Perturb

Each perturbation requires selecting one or more
documents to perturb, e.g., in addition and deletion,
we need to choose which documents to add and
remove. We investigate two strategies:

• Random: Select documents to perturb randomly,
mimicking a (very) weak retriever.

• Oracle: Select documents in a way that mim-
ics a strong retriever. For example, in deletion,
we remove relevant documents in order of least
to most similar to the reference summary R,17

whereas in addition, we add irrelevant documents
in order of most to least similar to R. We com-
pute similarities using the Sentence Transform-
ers library (Reimers and Gurevych, 2019).18

16Deduplication is non-trivial (Lee et al., 2022) and near-
duplicates are not uncommon in large document collections
like C4 (Dodge et al., 2021) or S2ORC (Lo et al., 2020)

17Similar to §5, this leverages R as a pseudo-query
18Specifically, we use all-MiniLM-L6-v2, which is a strong

general-purpose model for sentence embeddings. Details here.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://www.sbert.net/docs/pretrained_models.html


Figure 3: Graphical depiction of the perturbations. The dashed line indicates the input document set. Black and
white documents are the ground-truth documents. Green documents have been added, red documents removed
and blue documents modified. Unique documents are lettered.

For perturbations that require selecting irrelevant
documents (e.g. addition and replacement), we
select from the set of all documents in the train,
validation, and test splits (excluding the documents
from the example we are perturbing). For each doc-
ument selection strategy, we evaluate summarizer
performance under increasing amounts of perturba-
tion, from 0% of documents perturbed up to 100%.

7.2 Results of Simulation Experiments
In Figure 4, we display the results of our experi-
ments simulating document retrieval errors (besides
sorting, see below) for two model-dataset pairs.19

To better contextualize the results, we shade differ-
ences in ROUGE≥0.5 — the average difference in
summarization performance reported in *CL con-
ferences (Deutsch et al., 2022) — in red and the
rest in green. This serves as a rough yardstick to
help identify large drops in performance. We also
symlog (Webber, 2012) the y-axis to make small
changes in performance more apparent. In general,
the results are congruent with our open-domain
MDS experiments (§5): large reductions in sum-
marization performance are observed even in cases
of few simulated errors and, strong summarizers
(Figure 4, left) are more sensitive to retrieval errors
than weak summarizers (Figure 4, right). Below,
we discuss other notable trends in detail.

Models are insensitive to duplicates and small
token-level changes A consistent trend across

19These results were chosen because they are exemplary
of the main trends we observed across all model and dataset
pairs. Please see Appendix I for the complete set of results.

most models and datasets was an insensitivity to
duplicate documents, even in the extreme case of
80-100% duplication, suggesting that deduplica-
tion efforts on the document index are unlikely to
translate to improvements in summarization perfor-
mance. However, this assumes that duplicate docu-
ments are included without replacing relevant doc-
uments, which is possible if k is chosen based on a
relevance threshold.20 Another trend is that models
do not appear overly sensitive to minor token-level
changes (exemplified by backtranslation) relative
to the other perturbations, further motivating our
focus on document-level errors.

Models may not consider all documents when
summarizing In the random setting, even small
amounts of deletion lead to large drops in sum-
marization performance. Conversely, deletion has
surprisingly little impact on performance in the or-
acle setting until a majority of documents (>60%)
have been removed. These results have two non-
mutually exclusive explanations. First, that models
only consider some input documents when sum-
marizing. Second, that reference summaries cover
only a fraction of input document content, which
is corroborated by recent work (Wolhandler et al.,
2022). We note that this trend was less pronounced
in cases of weaker summarization performance.

Document order does not generally impact
summarization performance As far as we

20In this case, duplicate documents would obtain the same
relevance score and would not take the place of other non-
duplicate documents with the same or higher relevance score



Figure 4: Results of the perturbation experiments on Multi-News (left) and Cochrane (right). Mean change in
summarization performance plotted against the percent of perturbed input documents. Values above -0.49 ROUGE
are shaded in green, and values below in red, the average difference in summarization performance reported in
*CL conferences. Y-axis is displayed in symlog scale. 68% confidence intervals (CI) are plotted as error bands.

know, prior work has not investigated whether
multi-document summarizers are sensitive to in-
put document order. Although input documents are
generally considered unordered, they are usually
concatenated before passing them to a summarizer.
To determine if models are sensitive to this order,
we sorted the input documents of each dataset be-
fore concatenation and re-evaluated the summariz-
ers. We investigate two ordering strategies:

• Random: Shuffle documents randomly.

• Oracle: Sort documents by similarity to the ref-
erence summary. This is motivated from two
perspectives: (1) prior work has found that trans-
formers are biased toward earlier tokens in their
inputs (Hofstätter et al., 2021), so we might ex-
pect improved performance by placing the most
similar content to the reference summary first, (2)
from an IR perspective, a strong retriever would
assign a higher rank to the most relevant docu-
ments, and we might choose to input documents
to our summarizer based on this order.

In our experiments, we find no significant differ-
ence (paired t-test, p = 0.01) in summarization
performance for any model-dataset pair, except in
the case of WCEP-10 (see Appendix J). Here we
find that both models we evaluate (PRIMERA and
LSG-BART) are negatively affected by random
sorting. One possible explanation is that, due to
how WCEP-10 was constructed, the documents
are (partially) sorted in order of relevance (see Ap-

pendix A). Models trained on this dataset may
have learned to exploit this, e.g., by assigning more
weight to earlier documents in the input. After
randomly shuffling input documents, this learned
heuristic would no longer hold, and summarization
performance might drop accordingly.

8 Related Work

Query-focused MDS In query-focused MDS
(QMDS) (Wang et al., 2013; Feigenblat et al., 2017;
Xu and Lapata, 2020; Pasunuru et al., 2021a), a
query or topic statement is provided alongside the
input documents and used to guide summarization.
For example, extractive QMDS methods use query
relevance to select the sentences that will form the
summary. However, ground-truth input documents
are still provided, and no retrieval from a docu-
ment index is performed. In this work, we propose
and investigate a more realistic scenario where,
given only the query, the input documents must be
retrieved from a large document index. We also
note that existing query-focused MDS datasets (e.g.
DUC 2005, 2006 & 2007) are extremely small (on
the scale of 10s of examples) and are therefore not
suitable for the large-scale analysis we conduct.

Open-domain QA Our proposal for open-
domain MDS mirrors a similar trend in the question
answering (QA) literature. While earlier research
focused on answering a question provided a text
passage (Rajpurkar et al., 2016, 2018), the now



predominant approach (open-domain QA) is to an-
swer a question without providing this passage, usu-
ally by referencing an external knowledge source
(e.g. Wikipedia). Even broader is the class of
knowledge-intensive (KI) language tasks (Petroni
et al., 2021), which include open-domain QA but
also fact-checking and entity-linking. These tasks
are defined by their requirement to access large,
external knowledge sources and are commonly
approached with a retrieve-then-generate frame-
work using “retrieval-augmented” generation ar-
chitectures (Guu et al., 2020; Lewis et al., 2020b;
Borgeaud et al., 2022; Izacard et al., 2022b). Our
retrieve-then-summarize approach is very similar
(§2), except that the outputs are, on average, much
longer than existing KI language tasks. Therefore,
we think a particularly promising approach for fu-
ture work is adapting retrieval-augmented genera-
tion architectures for open-domain MDS.

Previous attempts at open-domain MDS In
Zhang et al. (2021), a method similar to our
retrieve-then-summarize approach is proposed, us-
ing a pretrained dense passage retriever (DPR,
Karpukhin et al. 2020) and T5base (Raffel et al.,
2020) as summarizer.21 The model is trained and
evaluated on a dataset constructed from existing
QMDS datasets. This dataset is small, with ∼90
training examples and ∼45 test examples, and
does not appear to be publicly available. Here,
we conduct a much larger-scale analysis on mul-
tiple datasets from different domains (each con-
sisting of thousands or 10s of thousands of exam-
ples) and evaluate several of the top-performing
multi-document summarizers currently available.
We also extensively simulated document retrieval
errors to probe their impact on summarization per-
formance. Together, this allows us to draw much
broader conclusions about open-domain MDS and
to provide detailed practical advice for future work.

9 Limitations

Automated evaluation metrics may not corre-
late with human judgment Though established
metrics such as ROUGE and BERTScore are imper-
fect (Deutsch et al., 2022), they are frequently used
in the summarization literature, do correlate with
aspects of summary quality, and are useful for com-
paring system-level performance, especially in sce-
narios such as ours where performance differences

21At the time of writing, this work is unpublished

due to retrieval errors can be several points below
the baseline. To validate our findings, we intend to
conduct a human evaluation to better understand
qualitative differences in summaries generated in
the open-domain setting. The investigation of bet-
ter automated MDS evaluation metrics is also an
active field of research, and we hope to integrate
novel and performant metrics in future work.

Results conflate dataset features and model per-
formance Our evaluation conflates several is-
sues beyond the relative performance of retriev-
ers and summarizers. Dataset quality, the “multi-
document-ness” of each dataset, and the lack of
suitable evaluation metrics all contribute to noise
in our results. For example, a dataset that may
require only a subset of its input documents (as
characterized by Wolhandler et al. 2022) would
not be expected to respond to retrieval errors in
the same way as a dataset that needs more of its
input documents. By experimenting with multiple
datasets, retrievers, and summarizers, as well as
in the synthetic perturbation setting, we hope our
results are more resilient to these confounders.

Fine-tuning retrievers may lead to better per-
formance We experiment with retrievers in the
zero-shot setting without fine-tuning on MDS
datasets. Fine-tuning might improve performance
and lead to smaller reductions in summarization
performance. We leave the investigation of fine-
tuning retrieval for open-domain MDS to future
work.

10 Conclusion

This paper introduces open-domain MDS, a new
task definition for multi-document summarization.
This reformulation is more realistic and potentially
more useful, enabling users to specify their intent
with only a query. Open-domain MDS shares sim-
ilarities with recent work in knowledge-intensive
NLP, which homogenizes many tasks into a uni-
fied “retrieve-then-generate” approach. To enable
further progress in the open-domain setting, creat-
ing high-quality MDS datasets annotated with both
queries and reference summaries is necessary.
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A Dataset Details

All datasets were managed in the HuggingFace
Datasets library (Lhoest et al., 2021). The exam-
ples of each dataset consist of an input document
set, D and a human-written reference summary, S.
Multi-XScience and MSˆ2 each have an additional
input that is always provided (and never retrieved
or perturbed), the target articles abstract and the tar-
get reviews background section. Below, we provide
detailed descriptions of each dataset:

• Multi-News (Fabbri et al., 2019): Consists of
news articles and summaries collected from
www.newser.com. There are 44,972 exam-
ples in the train set and 5622 examples in the
test set. Each example contains between 1 and
10 documents, with a mean of ∼2.7.

• WCEP-10: Consists of news articles and
summaries collected from the Wikipedia Cur-
rent Events Portal (WCEP22). WCEP-1023

sub-samples the top 10 most relevant doc-
uments from the original WCEP dataset
(Gholipour Ghalandari et al., 2020). There
are 8158 examples in the train set and 1022
examples in the test set. Each example con-
tains between 1 and 10 documents, with a
mean of ∼9.1.

• Multi-XScience (Lu et al., 2020): The target
summary of each example is the related works
section of a scientific article, and the input
documents are the abstracts of the articles this
section cites. Also included is the target ar-
ticle’s abstract. There are 30,369 examples
in the train set and 5093 examples in the test
set. Each example contains between 1 and 20
documents, with a mean of ∼4.1.

• MSˆ2 (DeYoung et al., 2021): The target sum-
mary is a few sentences from a biomedical sys-
temic review which summarize the main find-
ings. The input documents are the included
studies for that review. Also included is the
target reviews background section. There are
14,188 examples in the train set and 2021 ex-
amples in the validation set. Each example
contains between 1 and 401 documents, with
a mean of ∼23.2.

22https://en.wikipedia.org/wiki/Portal:
Current_events

23https://huggingface.co/datasets/ccdv/
WCEP-10

• Cochrane (Wallace et al., 2021): Similar to
MSˆ2, except a background statement is not
included as input. There are 3752 examples
in the train set and 470 examples in the vali-
dation set. Each example contains between 1
and 537 documents, with a mean of ∼10.9.

B Retrieval Details

Document retrieval and evaluation are conducted
in the PyTerrier library (Macdonald and Tonellotto,
2020). In Table 6, we present the retrieval perfor-
mance on the train, validation and test split for each
dataset, retriever, and top-k strategy. Below, we
provided detailed descriptions of all retrievers:

• BM25 (Robertson et al., 1994): Like other
sparse retrievers, BM25 represents queries
and documents as sparse vectors, where each
element of a vector corresponds to a term
in the vocabulary. BM25 is a widely used
weighting scheme that extends TF-IDF (Jones,
2004) to account for document length and
term-frequency saturation. We use BM25 via
PyTerrier with the default settings.

• Contriever (Izacard et al., 2022a): Contriever
is an unsupervised dense retriever that uses
a bi-encoder architecture. Documents and
queries are encoded independently using the
same BERT model (Devlin et al., 2019), and
the final embedding is obtained by mean-
pooling over the hidden representations of the
model’s last layer. The relevance score be-
tween a query and a document is the dot prod-
uct of their embeddings. Specifically, we use
contriever-msmarco,24 which has been fine-
tuned on the MS MARCO dataset (Campos
et al., 2016). We use Contriever via the PyTer-
rier Sentence Transformers plugin (Soldaini,
2022) with the default settings.

C Model Details

All models are implemented in PyTorch, and pre-
trained weights are obtained from the HuggingFace
Transformers library (Wolf et al., 2020). Below, we
provide detailed descriptions of all models:

• LED (Beltagy et al., 2020): LED replaces full
self-attention with local windowed attention
and global attention mechanisms that scale

24https://huggingface.co/facebook/
contriever-msmarco
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Table 6: Retrieval performance. The precision and recall at k for each retriever and top-k strategy is reported. The
index for each dataset is the set of all documents in the train, validation and test sets; the reference summaries are
used as queries, except for MSˆ2, where we use the provided background section. The Cochrane test set is blind,
so we do not have access to the reference summaries to use as queries and therefore do not evaluate on the test set.

Train Validation Test

Dataset Retriever Retriever Type Top-k Strategy P@K R@K P@K R@K P@K R@K

Multi-News BM25 sparse max(10) 0.22 0.83 0.22 0.82 0.22 0.82
mean (3) 0.64 0.74 0.64 0.74 0.64 0.74

oracle 0.75 0.75 0.75 0.75 0.75 0.75
Contriever dense max 0.21 0.80 0.21 0.79 0.21 0.80

mean 0.59 0.69 0.59 0.69 0.59 0.70
oracle 0.69 0.69 0.69 0.69 0.69 0.69

WCEP-10 BM25 sparse max (10) 0.59 0.66 0.60 0.63 0.63 0.67
mean (9) 0.62 0.62 0.63 0.60 0.66 0.64

oracle 0.64 0.64 0.63 0.63 0.67 0.67
Contriever dense max 0.60 0.66 0.60 0.64 0.63 0.67

mean 0.62 0.63 0.63 0.60 0.66 0.63
oracle 0.65 0.65 0.63 0.63 0.66 0.66

Multi-XScience BM25 sparse max (20) 0.05 0.41 0.06 0.40 0.06 0.40
mean (4) 0.16 0.27 0.16 0.26 0.16 0.27

oracle 0.22 0.22 0.22 0.22 0.23 0.23
Contriever dense max 0.06 0.38 0.06 0.38 0.06 0.38

mean 0.16 0.24 0.16 0.24 0.16 0.24
oracle 0.20 0.20 0.20 0.20 0.21 0.21

MSˆ2 BM25 sparse max (25) 0.17 0.26 0.16 0.22 0.17 0.22
mean (17) 0.21 0.22 0.18 0.18 0.20 0.18

oracle 0.22 0.22 0.18 0.18 0.19 0.19
Contriever dense max 0.19 0.29 0.18 0.25 0.19 0.26

mean 0.23 0.24 0.21 0.21 0.23 0.21
oracle 0.24 0.24 0.21 0.21 0.22 0.22

Cochrane BM25 sparse max (25) 0.17 0.55 0.17 0.57 – –
mean (9) 0.30 0.42 0.31 0.44 – –

oracle 0.38 0.38 0.40 0.40 – –
Contriever dense max 0.20 0.63 0.20 0.64 – –

mean 0.34 0.48 0.35 0.49 – –
oracle 0.45 0.45 0.44 0.44 – –

linearly with input sequence length, allow-
ing for efficient processing of inputs up to
16K tokens. Its parameters are initialized with
the pretrained parameters of BART (Lewis
et al., 2020a), its positional embeddings with
16 copies of BART’s 1K position embeddings.
The model is fine-tuned on MDS datasets in a
supervised fashion.

• PEGASUS (Zhang et al., 2020a): PEGASUS
is pretrained using a novel Gap Sentences
Generation (GSG) objective, where whole sen-
tences from each document are masked, and
concatenated to form a pseudo-summary. The
model is then fine-tuned on MDS datasets in
a supervised fashion.

• PRIMERA (Xiao et al., 2022): Extends the
GSG objective with a novel masking strategy
explicitly designed for multi-document inputs
and pre-trains on a corpus of multi-document
examples. The model is then fine-tuned on
MDS datasets in a supervised fashion or used
in a zero-shot setting.

• LSG-BART25: Like LED, LSG-BART re-
places full self-attention with a sparsified ver-
sion, dubbed Local-Sparse-Global (LSG) at-
tention, to allow for efficient processing of
long inputs. It is initialized with the pretrained
parameters of BART and then fine-tuned on

25https://huggingface.co/ccdv/
lsg-bart-base-4096
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Table 7: Reported versus reproduced ROUGE-1/2/L scores for each model-dataset pair evaluated in the main paper.
We also report zero-shot performance on select datasets for PRIMERA. *Fine-tuned by us.

Reported Reproduced

Dataset
Model

PRIMERA PEGASUS LED-base LSG-BART-base PRIMERA PEGASUS LED-base LSG-BART-base

Multi-News 49.9/21.1/25.9 47.5/18.7/24.9 – – 49.3/20.3/25.4 48.2/20.1/25.4 – –
↪→ zero-shot 42.0/13.6/20.8 – – – 39.7/11.9/19.2 – – –
WCEP 46.1/25.2/37.9 – – 46.0/24.2/37.4 45.1/24.7/36.7 – – 45.9/24.1/37.2
↪→ zero-shot 28.0/10.3/20.9 – – – 31.3/10.7/22.2 – – –
Multi-XScience 31.9/7.4/18.0 – – – 31.7/6.1/17.1 – – –
↪→ zero-shot 29.1/4.6/15.7 – – – 27.0/3.9/14.6 – – –
MSˆ2* – – 26.4/8.0/19.6 – – – 28.5/9.5/20.9 –
Cochrane* – – 23.9/6.6/17.6 – – – 26.9/6.9/18.4 –

MDS datasets in a supervised fashion.

C.1 Reproducing Reported Scores
Before experimentation, we attempt to reproduce
the reported scores of each MDS model. The re-
sults are provided in Table 7. In general, we can
reproduce the reported ROUGE scores (and some-
times even improve upon them); however, in a few
cases, there are differences as large as ∼3 ROUGE,
with the largest differences being observed for
PRIMERA, particularly in the zero-shot setting.

D Extended Results from: section 5

In §5, we presented the results from our open-
domain MDS experiments for the sparse retriever
(BM25) only. The results from the dense retriever
(Contriever) were comparable and exhibited the
same general trends. We present the complete
dense retriever results in Table 8.

E Summarization Baselines

In Table 5, we presented the scores of several sim-
ple heuristic baselines. Detailed descriptions of
each baseline follow:

• Random (length-matched) summary: For
each example, take the summary to be the
reference summary of another example from
the same dataset that is the same (or similar)
length as the examples reference summary.
This provides us with coherent (but likely ir-
relevant) summaries of approximately the cor-
rect length from the same domain.

• All lead: For each example, take the sum-
mary to be the concatenation of the first sen-
tence from each input document. This is moti-
vated by the notion of a lead bias, namely that
in many summarization datasets (particularly
those comprised of news articles), sentences

at the beginning of a document are more likely
to contain information that appears in the ref-
erence summary (Nenkova et al., 2011; Hong
and Nenkova, 2014; Xing et al., 2021).

• Oracle document: For each example, take
the summary to be the input document with
the highest ROUGE-1 F1 score with that ex-
ample’s reference summary. This provides
us with relevant (but likely incomplete) sum-
maries with high token overlap. A high score
may indicate that a dataset is less “multi”
(Wolhandler et al., 2022).

• Oracle lead: The first sentence of the oracle
document (see above). In the case of MSˆ2
and Cochrane, this is the title of the oracle
document.

• Background/abstract: Applies only to MSˆ2
and Multi-XScience. For each example, take
the summary to be the additional input from
MSˆ2 (target reviews background section) and
Multi-XScience (target articles abstract).

F Training with Retrieval

In Figure 2, we presented the results of our ex-
periments fine-tuning existing summarizers in the
open-domain setting. We fine-tuned and evalu-
ated the best-performing model from each dataset:
PRIMERA for Multi-News and Multi-XScience,
LSG-BART-Base for WCEP-10 and LED-Base for
MSˆ2 and Cochrane. Each model was fine-tuned
for an additional 3 epochs (we found that additional
training made little difference) using the original
training hyperparameters. All models were fine-
tuned with the AdamW optimizer (Loshchilov and
Hutter, 2019) in the HuggingFace Transformers
library. The learning rate was linearly increased for
the first 10% of training steps and linearly decayed
to zero afterward.



Table 8: Results of the open-domain MDS experiments using a dense retriever (Contriever). Difference between
a summarizers performance on the ground-truth input documents and performance when the documents were
retrieved is shown. Statistically significant results are underlined (paired t-test, p = 0.01).

Retrieval Summarization

Dataset Model Top-k Strategy P@K R@K ROUGE-Avg F1 ∆ ROUGE-Avg F1 BERTScore F1 ∆ BERTScore F1

Multi-News PRIMERA max (10) 0.21 0.80 31.66 -7.77 31.78 -10.47
mean (3) 0.59 0.70 – -3.31 – -4.60

oracle 0.69 0.69 – -2.20 – -3.07
PEGASUS max – – 31.23 -8.69 29.88 -10.88

mean – – – -2.65 – -3.45
oracle – – – -1.76 – -2.28

WCEP-10 PRIMERA max (10) 0.63 0.67 35.50 +0.10 48.26 +0.90
mean (9) 0.66 0.63 – -0.14 – +0.68

oracle 0.66 0.66 – +0.29 – +0.86
LSG-BART-base max – – 35.76 -0.56 48.17 +0.26

mean – – – -0.96 – +0.10
oracle – – – -0.15 – +0.66

Multi-XScience PRIMERA max (20) 0.06 0.38 18.31 -0.45 10.57 -0.96
mean (4) 0.16 0.24 – -0.81 – -0.96

oracle 0.21 0.21 – -0.28 – -0.37
MSˆ2 LED-base max (25) 0.18 0.25 19.66 -0.43 22.74 -0.70

mean (17) 0.21 0.21 – -0.37 – -0.64
oracle 0.21 0.21 – -0.32 – -0.38

Cochrane LED-base max (25) 0.20 0.64 17.39 -0.94 23.12 -2.77
mean (9) 0.35 0.49 – -0.37 – -0.93

oracle 0.44 0.44 – +0.25 – +0.71

G Document Retrieval Error Analysis

In Figure 5, we tally the total number of errors
made by the sparse (BM25) and dense (Contriever)
retrievers on each dataset we investigated. For each
example, we count an addition (i.e. erroneous in-
clusion) each time a document not in the ground-
truth input document set is retrieved, a deletion
(i.e. erroneous exclusion) each time a ground-truth
document is not retrieved and a replacement (i.e.
an erroneous swap of a relevant document for an
irrelevant one) each time both one addition and one
deletion occur.

H Backtranslation

In the main paper, we use backtranslation to cre-
ate token-level perturbations. The procedure in-
volves selecting one or more documents from the
input set and translating them to another language
and back again, often creating small, token-level
changes like paraphrasing and synonym substitu-
tion (this is sometimes called “round-trip transla-
tion”, or RTT). We choose to translate documents
to and from Danish, as there exists freely available
and high-performing EN→DA and DA→EN ma-
chine translation (MT) models. In particular, we
use the models provided by the Language Technol-
ogy Research Group at the University of Helsinki
(Tiedemann and Thottingal, 2020). We implement
backtranslation using the nlpaug library (Ma,
2019). In Figure 6, we provide an example of a

backtranslated document demonstrating synonym
substitution (e.g. “highly”→“very”), paraphrasing
(e.g. “said the surviving ones”→“said that the sur-
vivors”) and grammatical errors (e.g. “14 critically
endangered black rhinoceros has died”).

I Extended Results from: section 7

In §7, we presented the results from our exper-
iments simulating document retrieval errors for
two model-dataset pairs that exemplified the main
trends in the rest of the results. In figures 7-13, we
present the complete results for all model-dataset
pairs.

J Sorting Perturbation Results

In Table 9, we present the tabulated results from the
sorting perturbation experiments. See §7 for more
details on the experimental procedure and §7.2 for
an analysis of the results.



Figure 5: Absolute error counts for different retrieval systems (sparse and dense) and top-k selection strategies
(max, mean, oracle). For each example in a given dataset, a retrieved document that does not exist in the ground-
truth input document set is counted as an addition and a ground-truth document that was not retrieved as a deletion.
Instances of one addition and one deletion are counted as a replacement.

Figure 6: Graphical depiction of the backtranslation perturbation. A truncated document from the Multi-News
(Fabbri et al., 2019) dataset is shown, and changes after backtranslation are highlighted.

Table 9: Results of the sorting perturbation experiments. Difference between a summarizers performance on
the ground-truth input documents and performance when the documents were perturbed is shown. Statistically
significant results are underlined (paired t-test, p = 0.01).

∆ ROUGE-Avg F1 ∆ BERTScore F1

Dataset Model ROUGE-Avg F1 BERTScore F1 Random Oracle Random Oracle

Multi-News PRIMERA 31.66 31.78 +0.06 +0.00 +0.02 +0.02
PEGASUS 31.23 29.88 -0.05 +0.04 -0.05 +0.16

WCEP-10 PRIMERA 35.50 48.26 -0.86 +0.11 -0.55 +0.57
LSG-BART-base 35.76 48.17 -0.98 -0.18 -0.62 +0.38

Multi-XScience PRIMERA 18.31 10.57 +0.07 -0.04 +0.13 -0.03
MS2 LED-base 19.66 22.74 +0.09 +0.24 +0.00 -0.01
Cochrane LED-base 17.39 23.12 -0.41 -0.32 -0.42 +0.06



Figure 7: Results of the perturbation experiments on
the Multi-News test set using PRIMERA. Mean change
in summarization performance plotted against percent
of perturbed input documents. 68% confidence inter-
vals (CI) are plotted as error bands.

Figure 8: Results of the perturbation experiments on
the Multi-News test set using PEGASUS. Mean change
in summarization performance plotted against percent
of perturbed input documents. 68% confidence inter-
vals (CI) are plotted as error bands.

Figure 9: Results of the perturbation experiments on
the WCEP-10 test set using PRIMERA. Mean change
in summarization performance plotted against percent
of perturbed input documents. 68% confidence inter-
vals (CI) are plotted as error bands.

Figure 10: Results of the perturbation experiments on
the WCEP-10 test set using LSG-BART-base. Mean
change in summarization performance plotted against
percent of perturbed input documents. 68% confidence
intervals (CI) are plotted as error bands.



Figure 11: Results of the perturbation experiments on
the Multi-XScience test set using PRIMERA. Mean
change in summarization performance plotted against
percent of perturbed input documents. 68% confidence
intervals (CI) are plotted as error bands.

Figure 12: Results of the perturbation experiments on
the MSˆ2 validation set using LED-base. Mean change
in summarization performance plotted against percent
of perturbed input documents. 68% confidence inter-
vals (CI) are plotted as error bands.

Figure 13: Results of the perturbation experiments on
the Cochrane validation set using LED-base. Mean
change in summarization performance plotted against
percent of perturbed input documents. 68% confidence
intervals (CI) are plotted as error bands.
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