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Abstract 
The success of personalized medicine relies on proper disease classification and subtyping. 
Differential gene expression among disease subtypes can have a significant impact on 
treatment effect. This complicates the role of clinicians seeking more tailored diagnoses in 
cases where granular disease subtypes are not well defined. PhenotypeXpression (PhenoX) is 
a tool for rapid disease subtyping using publicly available gene expression data and literature. 
PhenoX aggregates and clusters gene expression data to determine potential disease subtypes, 
and develops a phenotypic profile for each subtype using term co-occurrences in published 
literature. Although the availability of public gene expression data is limited, we are able to 
observe clearly defined subtypes for several conditions.  
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Introduction 
Personalized medicine promises an almost limitless subdivision of clinical phenotypes. 
Accordingly, treatments can be tailored to individuals based on the specifics of their disease 
presentation (Mirnezami et al, 2012). In an effort to define and organize the rapid expansion of 
phenotypes and related conditions, a number of ontological systems have been developed, 
including the Online Mendelian Inheritance in Man (OMIM) (Hamosh et al, 2002), Orphanet 
(Weinreich et al, 2008), Human Phenotype Ontology (HPO) (Robinson et al, 2010), Human 
Disease Ontology (DOID) (Schriml et al, 2012), MedGen (Landrum et al, 2014), and others. 
These resources attempt to reach a consensus hierarchy for disease and a shared 
nomenclature. While unique identifiers are useful for resolving semantic differences, they do not 
provide an adequate description of the phenotype itself. 
 
There has also been a steady increase in the amount of publicly available genetic expression 
data as public resources have scaled. The NCBI’s Gene Expression Omnibus (GEO) collects 
over 4000 gene expression datasets (Edgar et al, 2002). Several additional resources have 
been developed for expression data, such as the Human Cell Atlas (Regev et al, 2017),the 
Gene Expression Atlas (Kapushesky et al, 2010), the Cancer Genome Atlas (Weinstein et al, 
2013), GTEx (Lonsdale et al, 2013), and others. These resources provide promising 
opportunities to aggregate and share expression data across multiple projects and for 
identifying novel phenotypes. 
  
PhenotypeXpression (PhenoX) is a proof of principle tool for clinicians to quickly discover 
potential subtypes of known diseases. PhenoX rapidly aggregates gene expression data from 
multiple public studies, and then mines PubMed literature to develop novel disease 
subclassifications and expression profiles. By combining literature occurrences of subtype HPO 
and DOID information with GEO dataset expression profiles, each sub-classification of a 
disease is given a characteristic terminology fingerprint. Here we demonstrate the use of this 
tool for a common disease—Psoriasis—and identify two clusters with unique gene expression 
profiles.  

Software Description 

Operation 
PhenoX synthesizes information from several resources: GEO, MeSH, HPO, and DOID. GEO, 
as an NCBI database, supports labeling of datasets and search using MeSH terms. Given an 
input disease term, PhenoX will identify the matches in the MeSH disease hierarchy and 
suggest near matches using string similarity. PhenoX also identifies any known and named 
subclasses of the disease from the MeSH hierarchy. 
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GEO profiles matching the MeSH term are filtered using the “up down genes” filter. Resulting 
matches are parsed to return a list of differentially expressed gene names and corresponding 
GEO DataSets (GDS) (Barrett et al, 2013). All GDS are retrieved and hierarchically clustered 
using R-pvclust hclust (Suzuki et al, 2006); the presence or absence of each gene in a GDS is 
represented as a binary variable and used for clustering. GDS with only a single differential 
gene are excluded to reduce noise. Clustering is based on euclidean distance in order to 
generate p-values via an approximately unbiased method with bootstrap probabilities at each 
node. Clusters are defined when the derived p-value is above the threshold of alpha greater 
than 0.95. After cluster assignment, the GDS in each sub-classification cluster is used for 
PubMed literature retrieval. To check for batch effects during clustering, the number of samples, 
date of submission, and platform type for each GDS is collected. Each cluster is compared to 
the overall distribution for a significant difference (ɑ < 0.01) using the Kolmogorov-Smirnov test 
and chi-squared test for numerical and categorical data, respectively. Batch statistics are output 
to text file. 
 
The PubMed identifier cited by each GDS is retained. Differential genes conserved across entire 
clusters are expanded using Hugo Gene Nomenclature (HGNC) gene names and aliases 
(Povey et al, 2001). This expanded gene list is used with the original MeSH term to query the 
PubMed database for additional PubMed articles potentially related to each cluster. For each 
cluster, we consolidate the titles, abstracts, and keywords corresponding to associated PubMed 
articles, and identify HPO and DOID terms within the article texts. The Spacy Lookup extension 
library is used for named entity recognition (NER) based on HPO and DOID dictionary terms. 
Term frequency data is gathered for each article, and the counts are merged for each cluster. 
Word clouds are generated and used to visualize the term frequency differences between 
clusters, with a separate term frequency list exported as a text file. 

Implementation 
PhenoX is implemented in Python 3.6 and R. The minimum requirements, installation 
instructions, and usage instructions and examples are described in full on the PhenoX GitHub 
page. All Entrez data (GEO, GDS and PubMed) are accessed via Biopython (Cock et al, 2009). 
The software is designed to run on a personal computer, without requiring extensive resources. 
Usage is via the command line. The outputs include: (1) a dendrogram of matching GDS, (2) a 
word frequency visualization, (3) a heatmap of differentially expressed genes per GDS, (4) a 
pairwise distance graph of each GDS by absolute difference in gene sets, (5) a newick tree file, 
(6) a cluster batch statistics text file, and (7) a cluster term frequency text file. 

Results 

Computational Performance & Use Case 
Using several MeSH terms as inputs (such as Psoriasis and Sepsis), the typical run time is 1-2 
hours on a personal laptop with a 2.8 GHz dual-core processor and 8GB of RAM. The execution 
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time is primarily split between PubMed article retrieval and NER, the latter occupying the 
majority of time. Clustering, including bootstrapping, takes less than ten minutes. Some disease 
terms may lack representative GDS (at least two required), and clustering cannot proceed.  
 
In the case of Psoriasis (Figure 1), Cluster 1 contains a number of unique epidermal 
inflammatory or infectious diseases, including oral candidiasis, scabies, mucositis, and 
neurodermatitis. This suggests the possibility of comorbidities or confounders affecting some 
GDS groups (See Supplementary Table 1 for the full table of terms). In both the heatmap and 
the pairwise distance graph, there is consistent separation of two sub-groups, suggesting truly 
distinct expression profiles. Future work may include looking at deep phenotypes distinct in 
these two subgroups, and also looking at eQTLs in these subpopulations.  

Future Directions 
These subtypes and terminology are exploratory results, inviting a number of hypotheses, such 
as: using subtype-associated genes to inform cohort selection, exploring treatment options by 
identifying associated gene pathways, and identifying potential comorbidities or confounders. 
Improvements to PhenoX’s interface could allow for more flexible data exploration. Introducing 
parallel processing in several steps, particularly NER, could also greatly shorten runtime. As 
PhenoX utilizes web services and produces relatively small output files, this software is ideal for 
a web-hosted graphical interface for researchers without computational backgrounds.  
 
A significant limitation on PhenoX is the availability of curated expression data in GEO. The “up 
down genes” filter is only applied to a fraction of array data available in GEO (personal 
correspondence with GEO staff). According to the GEO website, “The subset effect scoring 
method is ad hoc…[t]his flag is simply an attempt to give potentially differentially-regulated 
genes higher visibility, and is not intended to provide an absolute determination of significance” 
(“Querying GEO”, 2016). A more thorough approach of analyzing each GDS to determine 
differential expression is beyond the scope of this project.  
 
As a proof of concept, PhenoX is able to demonstrate a clear mechanism to subclassify disease 
populations based on gene expression, and to use that information to mine publically available 
literature. PhenoX is also amenable to future expansions of GEO expression cataloging, and 
can be modified to accept gene expression data from a growing number of resources. This 
includes technologies like RNA-seq that are easier to analyze in a programmatic fashion while 
correcting for batch effects.  

Data and software availability 
Latest PhenoX source code available from: 
https://github.com/NCBI-Hackathons/phenotypeXpression . 

Archived source code at the time of publication: https://doi.org/10.5281/zenodo.1479957. 
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A Docker image of PhenoX is available at: 
https://hub.docker.com/r/ncbihackathons/phenotypexpression . 

Software license: MIT License 
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Figure Legends 
Figure 1. Visual outputs of PhenoX software. (A) A hierarchical clustering of GEO DataSets 
using approximately unbiased (AU) and bootstrap probabilities (BP) with 5000 bootstraps. 
Clusters called at AU alpha > 0.95. (B) A differential gene expression heatmap depicting all 
available gene names associated with the searched term, with the presence indicated in blue 
and the absence in red. (C)  A pairwise distance graph of each GDS by absolute difference in 
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gene sets. GDS from Cluster 0 are colored in red, and those from Cluster 1 are colored blue. (D) 
A word cloud of DOID and HPO terminology associated with each cluster. 
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Figure 1. Visual outputs of PhenoX software. (A) A hierarchical clustering of GEO DataSets (GDS) 
using approximately unbiased (AU) and bootstrap probabilities (BP) with 5000 bootstraps. Clusters 
called at AU alpha > 0.95. (B) A differential gene expression heatmap depicting all available gene 
names associated with the searched term, with the presence indicated in blue and the absence in red. 
(C)  A pairwise distance graph of each GDS by absolute difference in gene sets. GDS from Cluster 0 
are colored in red, and those from Cluster 1 are colored blue. (D) A word cloud of DOID and HPO 
terminology associated with each cluster.
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